
Programming Language Principles and
Paradigms

Release 0.4

Amir Kamil

Mar 17, 2025

CONTENTS

I Foundations 1

1 Introduction 3

2 Basic Python 5
2.1 Variables . 5
2.2 Basic Data Structures . 6
2.3 Compound Statements . 8
2.4 Function Definitions . 8
2.5 Class Definitions . 9
2.6 Modules . 10
2.7 Executing a Module . 11
2.8 Python Reference Semantics . 11

3 Basic Elements 12
3.1 Levels of Description . 12
3.2 Entities, Objects, and Variables . 14
3.3 L-Values and R-Values . 14
3.4 Expressions . 15
3.5 Statements . 16

4 Names and Environments 17
4.1 Blocks . 18
4.2 Name Lookup . 19
4.3 Nested Inline Blocks . 20
4.4 Scope in Functions . 21
4.5 Static Scope . 22
4.6 Dynamic Scope . 24
4.7 Point of Declaration or Definition . 25
4.8 Implementation Strategies . 26

5 Control Flow 29
5.1 Expression Sequencing . 29
5.2 Statement Sequences . 30
5.3 Unstructured Transfer of Control . 31
5.4 Structured Control . 32
5.5 Exceptions . 35
5.6 Avoiding Control Flow . 37

6 Memory Management 44
6.1 Storage Duration Classes . 44
6.2 Value and Reference Semantics . 46

i

6.3 RAII and Scope-Based Resource Management . 49
6.4 Garbage Collection . 51

7 Grammars 55
7.1 Regular Expressions . 55
7.2 Context-Free Grammars . 57
7.3 Grammars in Programming Languages . 59

II Functional Programming 64

8 Introduction to Scheme 66
8.1 Expressions . 66
8.2 Definitions . 67
8.3 Compound Values . 69
8.4 Symbolic Data . 71

9 Functions 73
9.1 Keyword Arguments . 73
9.2 Default Arguments . 74
9.3 Variadic Functions . 75
9.4 Parameter Passing . 77
9.5 Evaluation of Function Calls . 80

10 Recursion 81
10.1 Activation Records . 81
10.2 Tail Recursion . 83
10.3 Iteration and Recursion . 84

11 Higher-Order Functions 86
11.1 Function Objects . 86
11.2 Functions as Parameters . 88
11.3 Nested Functions . 89

12 Lambda Functions 94
12.1 Scheme . 94
12.2 Python . 95
12.3 Java . 96
12.4 C++ . 97
12.5 Common Patterns . 99

13 Continuations 104
13.1 Restricted Continuations . 104
13.2 First-Class Continuations . 110

III Theory 118

14 Lambda Calculus 120
14.1 Non-Terminating Computation . 123
14.2 Normal-Order Evaluation . 123
14.3 Encoding Data . 124
14.4 Recursion . 129
14.5 Equivalent Models . 130

ii

15 Operational Semantics 132
15.1 Language . 133
15.2 States and Transitions . 133
15.3 Expressions . 134
15.4 Statements . 136
15.5 Examples . 138
15.6 Operational Semantics for Lambda Calculus . 138

16 Formal Type Systems 141
16.1 Variables . 142
16.2 Functions . 144
16.3 Subtyping . 145
16.4 Full Typing Rules . 148

IV Data Abstraction 150

17 Functional Data Abstraction 152
17.1 Pairs and Lists . 152
17.2 Message Passing . 154
17.3 Lists . 154
17.4 Dictionaries . 156
17.5 Dispatch Dictionaries . 157

18 Object-Oriented Programming 160
18.1 Members . 160
18.2 Access Control . 161
18.3 Kinds of Methods . 162
18.4 Nested and Local Classes . 165
18.5 Implementation Strategies . 166

19 Inheritance and Polymorphism 169
19.1 Types of Inheritance . 169
19.2 Class Hierarchies . 171
19.3 Method Overriding . 172
19.4 Implementing Dynamic Binding . 176
19.5 Multiple Inheritance . 179

20 Static Analysis 185
20.1 Types . 185
20.2 Control-Flow Analysis . 189

21 Dynamic Typing 192

22 Generics 194
22.1 Implicit Parametric Polymorphism . 194
22.2 Explicit Parametric Polymorphism . 194
22.3 Duck Typing . 201

23 Modules and Namespaces 203
23.1 Translation Units . 203
23.2 Modules, Packages, and Namespaces . 204
23.3 Linkage . 207
23.4 Information Hiding . 207
23.5 Initialization . 209

iii

V Declarative Programming 211

24 Logic Programming 213
24.1 Prolog . 214
24.2 Unification and Search . 219
24.3 The Cut Operator . 227
24.4 Negation . 228
24.5 Examples . 229

25 Constraints and Dependencies 234
25.1 Constraint Logic Programming . 234
25.2 Make . 238

26 Pattern Matching 241

VI Metaprogramming 245

27 Macros and Code Generation 247
27.1 Scheme Macros . 250
27.2 CPP Macros . 252
27.3 Code Generation . 256

28 Template Metaprogramming 257
28.1 Pairs . 258
28.2 Numerical Computations . 262
28.3 Templates and Function Overloading . 266
28.4 SFINAE . 267
28.5 Ensuring a Substitution Failure . 268
28.6 Variadic Templates . 270

29 Example: Multidimensional Arrays 274
29.1 Points . 274
29.2 Domains . 276
29.3 Arrays . 278
29.4 Stencil . 280
29.5 Nested Iteration . 282

VII Concurrent Programming 285

30 Parallel Computing 287
30.1 Parallelism in Python . 288
30.2 The Problem with Shared State . 289
30.3 When No Synchronization is Necessary . 290
30.4 Synchronized Data Structures . 291
30.5 Locks . 292
30.6 Barriers . 293
30.7 Message Passing . 293
30.8 Application Examples . 294
30.9 Synchronization Pitfalls . 296
30.10 Conclusion . 299

31 Asynchronous Tasks 300
31.1 Limiting the Number of Tasks . 301

iv

31.2 Launch Policy . 304

VIII About 306

32 About 307

v

Part I

Foundations

1

Programming Language Principles and Paradigms, Release 0.4

This text covers the fundamental concepts in programming languages. While we will be using several languages, the
purpose of the text is not to learn different languages. Instead, it is to learn the concepts that will both facilitate learning
a new language quickly and make better use of the programming constructs that a programming language provides. To
analogize with spoken languages, the subject of this text is more akin to linguistics rather than a specific language.

Topics that are covered in this text include programming-language features for naming, control flow, and memory
management, basic theory of programming languages, such as grammars and type systems, and various programming
paradigms including functional, object-oriented, and logic-programming techniques. We will also consider advanced
programming techniques such as generic programming and code generation.

2

CHAPTER

ONE

INTRODUCTION

There are no solutions; there are only trade-offs. — Thomas Sowell

A programming language is a language designed for expressing computer programs at a higher level than a machine
language. While many programmers consider programming languages such as C to be more powerful than assembly,
and higher-level languages such as C++ and Python to be more powerful than C, in reality, all languages can solve
exactly the same problems. This perceived power differential is due to the set of abstractions each language provides,
and to what degree a language facilitates programming in different paradigms and patterns.

There are countless programming languages in existence. A list of notable languages on Wikipedia enumerates over
700 languages. If all languages can solve the same problems, why are there so many languages?

Figure 1.1: Credit: xkcd

A language occupies a point in the space of tradeoffs between different design goals. These include ease of writing
code, readability, performance, maintainability, portability, modularity, safety, and many other considerations. It is
impossible to optimize for all these goals simultaneously. Instead, they must be balanced according to the intended use
of a language.

A language may also be intended for a specific problem domain and therefore support target design goals and abstrac-
tions that are important to that domain. A concrete example is Fortran, which is suited to numerical computations by

3

https://en.wikipedia.org/wiki/A_Conflict_of_Visions
https://en.wikipedia.org/wiki/List_of_programming_languages
http://xkcd.com

Programming Language Principles and Paradigms, Release 0.4

providing a multidimensional array abstraction with excellent performance.

Programming languages are often designed with a particular language paradigm in mind. One such paradigm is im-
perative programming, where a program is decomposed into explicit computational steps in the form of statements.
Another general pattern is declarative programming, where computation is expressed in terms of what it should ac-
complish rather than how. More specific styles within this space include functional programming, which models com-
putation after mathematical functions and avoids mutation, and logic programming, which expresses a program in the
form of facts and rules. One last example is object-oriented programming, which organizes data into objects and com-
putation into methods that are associated with those objects. These language paradigms are not mutually exclusive, and
higher-level languages often support a combination of paradigms.

Languages also differ in the design of their type systems. Entities in a programming language are generally associ-
ated with a type, which determines what operations are valid on those entities and how to perform those operations.
Two common methodologies are static typing, in which types are inferred directly from a program’s source code and
checked at compile time, and dynamic typing, where types are tracked and checked at runtime. Often languages use a
combination of these systems, such as with dynamic casting in C++.

A final consideration in designing and implementing a language is whether it is intended to be compiled or interpreted.
In compilation, a program is transformed from its original code into a form that is more suited to direct execution on
a particular system. This usually occurs separately from running the program, and the translation need only be done
once for a program on a specific system. In contrast, interpreting code entails simulating its execution at runtime,
which generally results in lower performance than compilation. However, interpreters can enable greater flexibility
than compilers, since the original code is available and program state is more easily accessible. Modern languages
often use a combination of compilation and interpretation.

A common aspect of these design areas is that they do not consist of discrete choices. Rather, they present a continuum
between different canonical choices, and programming languages often fall somewhere along that continuum. When
we say that a language, for instance, is statically typed, in actuality we mean that the predominant form of type checking
is static, even though the language may have some elements of dynamic typing.

4

CHAPTER

TWO

BASIC PYTHON

A language isn’t something you learn so much as something you join. — Arika Okrent

Python is a widely used programming language that supports many programming paradigms and has numerous libraries
in a wide variety of application domains. We will use Python, along with other languages, to explore the design space
of programming languages. While some systems come with a version of Python already installed, in this text, we will
be using the most recent stable release of Python 3. Installation packages can be found on the downloads page of the
Python website.

Python is an interpreted language, and a good way to gain familiarity with Python is to start the interpreter and interact
with it directly. In order to start up the interpreter, you will need to go to your command prompt and type python,
python3 or python3.5 depending on how many versions are installed on your machine. Depending on the operating
system you are using, you might also have to modify your PATH.

Starting the interpreter will bring up the >>> prompt, allowing you to type code directly into the interpreter. When
you press enter, the Python interpreter will interpret the code you typed, or if the code is syntactically incomplete,
wait for more input. Upon evaluating an expression, the interactive interpreter will display the evaluation result, unless
evaluation resulted in the special None value.

>>> 3 + 4
7

>>> abs(-2.1)
2.1

>>> None

Each session keeps a history of what you have typed. To access that history, press <Control>-P (previous) and
<Control>-N (next). <Control>-D exits a session, which discards this history. Up and down arrows also cycle
through history on some systems.

2.1 Variables

Variables in Python do not have a static type. They are introduced by assigning a value to a name:

>>> x = 4
>>> x
4

Binding a variable to a value of one type does not preclude binding it to a value of a different type later on:

5

http://arikaokrent.com/
https://docs.python.org/3/
https://www.python.org/downloads/
https://www.python.org/downloads/

Programming Language Principles and Paradigms, Release 0.4

>>> x = 4
>>> x = 'hello'
>>> x
'hello'
>>> x = 4.1
>>> x
4.1

Multiple variables can be assigned to in a single statement using a comma to separate names on the left-hand side and
values on the right-hand side:

>>> y, z = x + 1, x + 2
>>> y
5.1
>>> z
6.1

2.2 Basic Data Structures

Multiple assignment is actually an example of using a tuple, which is an immutable compound data type. In the context
of programming languages, something is immutable if its state cannot be changed after it was first created. A tuple is
constructed by separating values by commas, and then optionally surrounding the values with parentheses.

>>> a = (3, 4)
>>> a
(3, 4)

Individual elements of a tuple can be accessed with square brackets.

>>> a[0]
3
>>> a[1]
4

Negative indices access a container in reverse, with -1 corresponding to the last element:

>>> a[-1]
4
>>> a[-2]
3

Lists are mutable containers, and they are constructed using square brackets around the values.

>>> b = [5, 6]
>>> b
[5, 6]

Unlike tuples, list elements can be modified, and new elements can be appended to the end of a list:

>>> b[1] = 7
>>> b.append(8)

(continues on next page)

2.2. Basic Data Structures 6

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

>>> b
[5, 7, 8]

The dir function can be used to inspect the full interface of the list type:

>>> dir(list)
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__delslice__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__getslice__', '__gt__',
'__hash__', '__iadd__', '__imul__', '__init__', '__iter__', '__le__',
'__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__reversed__', '__rmul__',
'__setattr__', '__setitem__', '__setslice__', '__sizeof__', '__str__',
'__subclasshook__', 'append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

Documentation of a particular method can be retrieved with the help function:

>>> help(list.append)
Help on method_descriptor:
append(...)

L.append(object) -- append object to end

A dict (short for dictionary) is an associative container that maps a key to a value. It is created by enclosing key-value
pairs within curly braces.

>>> d = { 1 : 2, 'hello' : 'world' }
>>> d
{1: 2, 'hello': 'world'}
>>> d[1]
2
>>> d['hello']
'world'

Strings are denoted by either single or double quotes. A common convention is to use single quotes unless the string
contains a single quote as one of its characters.

>>> 'hello world'
'hello world'
>>> "hello world"
'hello world'

Furthermore, A string can span multiple lines if it is enclosed in triple quotes. For example:

>>> x = """
... Hello
... World!
... """
>>> x
'\nHello\nWorld!\n'

Where \n is the newline character.

2.2. Basic Data Structures 7

Programming Language Principles and Paradigms, Release 0.4

2.3 Compound Statements

In Python, a sequence of statements, also called a suite, consists of one or more statements preceded by the same
indentation. Unlike other languages, such as C++, indentation is meaningful, and inconsistent indentation is a syntax
error. Common convention in Python is to use four spaces per indentation level. Avoid using tabs, as they are not
visually distinguishable from spaces but are considered distinct by the interpreter.

A conditional statement is composed of an if clause, zero or more elif clauses, and an optional else clause:

if <expression>:
<suite>

elif <expression>:
<suite>

else:
<suite>

A suite must be indented further than its header, and each statement in the suite must have the same indentation. Each
header must end with a colon. The conditional expression need not be parenthesized.

>>> if pow(2, 3) > 5:
print('greater than')

elif pow(2, 3) == 5:
print('equal')

else:
print('less than')

greater than

While loops have similar syntax:

while <expression>:
<suite>

For loops iterate over a sequence, similar to the range-based for loop in C++:

for <variable> in <sequence>:
<suite>

>>> for i in [3, 4, 5]:
print(i)

3
4
5

2.4 Function Definitions

A function is defined with the def statement:

def <function>(<arguments>):
<suite>

In keeping with Python’s lack of static typing, the return and argument types are not specified.

2.3. Compound Statements 8

Programming Language Principles and Paradigms, Release 0.4

>>> def square(x):
return x * x

If a function does not explicitly return a value when it is called, then it returns the special None value.

>>> def print_twice(s):
print(s)
print(s)

>>> x = print_twice(3)
3
3
>>> x
>>> print(x)
None

A def statement binds a function object to the given name. Unlike in some other languages, this name can be rebound
to something else.

>>> print_twice
<function print_twice at 0x103e0e488>
>>> print_twice = 2
>>> print_twice
2
>>> print_twice(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'int' object is not callable

In Python, definitions are actually executed when they are encountered. For a function definition, this creates a new
function object and binds it to the name specified in the definition.

2.5 Class Definitions

A class is defined with a class statement:

class <name>(<base classes>):
<suite>

The list of base classes can be elided, in which case the base class is object.

When defining an instance method in Python, the definition explicitly takes in self as the first parameter. When the
method is called, the receiving object is implicitly passed in to this first parameter.

>>> class Cat:
def speak(self):

print('meow')
>>> Cat().speak()
meow

The constructor is defined using the special __init__ method. Member variables, more properly called attributes in
Python, are introduced using the self parameter and dot syntax.

2.5. Class Definitions 9

Programming Language Principles and Paradigms, Release 0.4

>>> class Square:
def __init__(self, side_length):

self.side = side_length
def perimeter(self):

return 4 * self.side
def area(self):

return self.side * self.side
>>> s = Square(3)
>>> s.perimeter()
12
>>> s.area()
9

2.6 Modules

Python has a number of built-in libraries organized as modules, and an individual .py file also represents a module.
Modules can be loaded using the import statement:

import <modules>

This binds module objects to their corresponding names in the current environment, which can then be used to access
an attribute of a module.

>>> import operator, math
>>> math.pow(operator.mul(2, 3), 2)
36.0

Individual attributes of a module can also be introduced into the environment using another form of the import state-
ment:

from <module> import <attributes>

>>> from math import pow
>>> pow(2, 3)
8

Another variant imports all names from a module:

from <module> import *

>>> from operator import *
>>> mul(2, 3)
6

2.6. Modules 10

Programming Language Principles and Paradigms, Release 0.4

2.7 Executing a Module

Python does not specify a special main function like the C family of languages. Instead, all code in a module is
interpreted when it is loaded, starting from the top.

It is possible to specify a piece of code that does not run when a module is imported, but runs when a module is executed
directly at the command-line, as in:

python3 program.py <arguments>

This is accomplished by checking if the __name__ attribute is set to '__main__':

if __name__ == '__main__':
<suite>

The suite will only be executed if the module is executed on the command-line.

Command-line arguments can be obtained using the argv list in the sys module. As in C and C++, the first argument
is the name of the program.

2.8 Python Reference Semantics

A variable in Python is actually an indirect reference to an object, rather than holding the object directly in the variable’s
memory location. Thus, a Python variable is analogous to a C++ pointer, and assigning from one variable to another
merely copies the indirect reference rather than copying the object. The following example illustrates this:

>>> x = []
>>> y = x
>>> y.append(3)
>>> x
[3]

The assignment y = x results in both x and y referring to the same list object, so that the x reference reflects the
modification to the list that was made through the y reference. Thus, an assignment does not make a copy of an object.
To copy an object, we can use the copy() function in the copymodule (or the deepcopy() function in the same module
if we want a deep rather than a shallow copy). Alternatively, many types can be copied by invoking the constructor
with an existing object, as in the following:

>>> x = [3]
>>> y = list(x)
>>> y.append(-7)
>>> y
[3, -7]
>>> x
[3]

We will discuss reference semantics in more detail later.

2.7. Executing a Module 11

CHAPTER

THREE

BASIC ELEMENTS

A programming language is a formal system for expressing computation. Any formal language, whether natural, math-
ematical, or programming, has rules that specify what sequences of symbols are meaningful in the language. We will
see many of the rules that govern a programming language throughout this text, but we begin with the basic elements
that comprise a program.

3.1 Levels of Description

A language, whether a spoken language or a programming language, can be described at multiple levels of abstraction,
from how the most basic pieces of the language can be formed, to how they can be combined to construct meaningful
phrases, to how those phrases can be used to accomplish a purpose. The following are the levels we consider when it
comes to a programming language:

• Grammar determines what phrases are correct. It can be further divided into lexical structure, which defines
how the words of the language are constructed, and syntax, which determines what sequences of words form
correct phrases.

• Semantics specify the meaning of a correct phrase.

• Pragmatics are concerned with the practical use of correct phrases. In programming languages, this includes
common design patterns and programming practices.

• An implementation determines how the actions specified by a meaningful phrase are accomplished. This level
of description is unique to programming languages, which we use to write programs that perform actual tasks
that need to be done.

We proceed to take a closer look at the first two levels of description. We will consider the latter two levels later.

3.1.1 Lexical Structure

The lexical structure of a language determines what constitutes the words that are in the language, more commonly
called tokens in the context of programming languages. Valid characters are defined by the alphabet, generally ASCII
or Unicode in a programming language, and tokens are composed of one or more consecutive characters. Tokens are
often separated by whitespace, and a token also ends if it is followed by a character that is invalid for the token.

The classes of tokens depend on the particular language, but common classes are identifiers, keywords, literals, opera-
tors, and separators.

A literal represents a particular value directly in source code. Literals include integer and floating-point numbers,
booleans, characters, and strings. Often a language provides different literal representations for each primitive type.
For example, C++ includes int, long, and long long integer literals by using the l and ll suffixes for the latter two.
A language may also support different representations for literals of a particular type, such as decimal, hexadecimal,

12

Programming Language Principles and Paradigms, Release 0.4

octal, and binary integer literals. Some languages, such as C++11, even allow user-defined literals that can represent
arbitrary types.

Operators such as + and == are commonly defined as special tokens. However, some languages such as Scheme do not
treat operators as special; instead, they are considered to be identifiers.

An identifier is a sequence of characters that can be used to name entities in a program. In languages such as Python and
C++, an identifier begins with a letter or underscore and can subsequently contain letters, underscores, and digits. Java
allows identifiers to contain the dollar sign ($) symbol, though general practice is to reserve it for machine-generated
names. Scheme allows many more symbols to be part of an identifier. Most languages are case sensitive in that
capitalization is significant. However, some other languages, such as Scheme, treat identifiers in a case-insensitive
manner.

A keyword is a sequence of characters that has the form of an identifier but has special meaning in the language, such as
the token if in many languages. Depending on the language, a keyword can be forbidden from being used as a name,
or its meaning can be determined based on context.

Separators, also called delimiters or punctuators, are the punctuation of a language, denoting the boundary between
programmatic constructs or their components. Common separators include parentheses, curly braces, commas, and
semicolons. In some cases, a token may act as a separator or as an operator depending on the context, such as a comma
in C and C++.

The lexical structure of a language is usually specified using regular expressions, and breaking source code into tokens
is often the first step in compiling or interpreting a program. The particulars of regular expressions will be discussed
later on in this text.

3.1.2 Syntax

The syntax of a language specifies what sequences of tokens constitute valid fragments of the language. Syntax concerns
only the structure of a program; source code may be syntactically correct but semantically invalid, resulting in an invalid
program.

An example of a syntactic rule is that parentheses must be balanced within a code fragment. For example, the following
code consists of valid tokens in C++ but is not syntactically valid:

x = (1 + ;

Another example of a syntax rule is that consecutive identifiers are generally illegal in Python or C++ (declarations
being an exception in the latter).

The syntax rules of a language are specified using a formal grammar, a topic we will return to later in the text.

3.1.3 Semantics

Whereas syntax is concerned with the structure of code fragments, semantics determines the meaning of a code frag-
ment. In particular, it indicates what value is computed or what action is taken by a code fragment.

Defining a programming language requires assigning semantics to each syntactic construct in the language. As we will
see later, there are formal methods for describing the semantics of a construct. However, given the complexity of most
languages and the fact that most programmers are not trained in formal semantics, semantics are often described using
natural language.

Semantics further restrict what constitutes valid code. For example, the following is syntactically correct in C++ but
semantically invalid:

int x = 3;
x.foo(); // invalid

3.1. Levels of Description 13

Programming Language Principles and Paradigms, Release 0.4

3.2 Entities, Objects, and Variables

An entity, also called a citizen or object (though we use the latter term more specifically, as defined below), denotes
something that can be named in a program. Examples include types, functions, data objects, and values.

A first-class entity is an entity that supports all operations generally available to other entities, such as being associated
with a variable, passed as an argument, returned from a function, and created at runtime. The set of first-class entities
differs between programming languages. For example, functions and types are first-class entities in Python, but not
in C++ or Java. (Functions in C++ have many of the characteristics of first-class entities, but they cannot be created
dynamically, so they are not quite first class.) Control of execution may also be a first-class entity, as we will see in
Continuations. Table 3.1 summarizes the first-class entities in C++, Java, Python, and Scheme.

Table 3.1: First-class entities in C++, Java, Python, and Scheme.

C++ Java Python Scheme
Functions no (almost) no yes yes
Types no no yes no
Control no no no yes

An object is a location in memory that holds a value. An object may be modifiable, in which case the value it holds
may change, or it may be constant. A variable is a name paired with an object. In some languages, multiple names
may be associated with the same object, in which case the names are said to alias the same object.

An object has a lifetime during which it is valid to use that object while a variable has a scope, which specifies the parts
of a program that have access to that variable. An object also has a type that determines what its data represents and
the operations that the object supports. We will examine these concepts in more detail later on.

3.3 L-Values and R-Values

An object actually has two values associated with it: its memory location and the contents of that memory location.
The former is called an l-value while the latter is an r-value, after the fact that they are generally used on the left-hand
side and right-hand side of an assignment, respectively. Most languages implicitly convert l-values to r-values when
necessary.

As a concrete example, consider an integer variable x:

int x = 3;

The name x denotes a memory location that is initialized to hold the value 3. When the name x is evaluated, the result
is an l-value. However, it is automatically converted to an r-value in the following definition:

int y = x;

The initialization of the variable y requires an r-value, so x is converted to its r-value 3. On the other hand, in the
following assignment, an l-value is required on the left-hand side:

x = 4;

The left-hand side evaluates to the memory location denoted by x and changes its contents to the r-value 4.

Temporary objects, such as the result of x + 3, have r-values but do not necessarily have l-values. Most languages do
not allow access to a temporary’s l-value even if it has one.

We will return to l-values and r-values when we discuss value and reference semantics.

3.2. Entities, Objects, and Variables 14

Programming Language Principles and Paradigms, Release 0.4

3.4 Expressions

An expression is a syntactic construct that results in a value. An expression is evaluated to produce the resulting value.

The simplest expressions are literals, which evaluate to the value they represent, and identifiers, which evaluate to the
l-value or r-value of the corresponding object, assuming that a variable is in scope that associates the identifier with an
object.

Simple expressions can be combined to form compound expressions according to the rules defined by a language.
Combinators include operators such as + or .. A function call is also generally a compound expression, as in:

print("Hello", "world")

Depending on the language, the functor itself (print in the example above) can be an expression. Each argument is
also an expression.

Operators have precedence rules that determine how subexpressions are grouped when multiple operators are involved.
For example, the following expression typically evaluates to 7 in languages that have infix operators, since * has higher
precedence than +:

1 + 2 * 3

Infix languages generally allow subexpressions to be explicitly grouped using parentheses:

(1 + 2) * 3

An operator also has an associativity that determines how its operands group when there are multiple operators of the
same precedence. Binary operators typically associate from left to right, while unary operators generally have right
associativity. A notable exception are assignment operators in languages such as C++, which associate right to left.
This allows expressions such as:

a = b = c = 0

This is equivalent to:

(a = (b = (c = 0)))

So the end result is that all of a, b, and c are assigned the value 0.

In addition to defining how subexpressions are grouped together, the language must specify the order in which those
subexpressions are evaluated. In many languages, such as Python and Java, subexpressions are generally evaluated in
order from left to right. In Scheme, C, and C++, however, order of evaluation is left up to the implementation in many
cases. Consider the following example in C++:

int x = 3;
cout << ++x << " " << x << endl;

With C++14 and earlier, this code can result in 4 3 or 4 4 being printed, depending on the implementation. C++17
modified the order-of-evaluation rules such that this code always results in 4 4, though there are other cases were the
order of evaluation is still left to the implementation (e.g. the order in which arguments to a function call are evaluated).

3.4. Expressions 15

Programming Language Principles and Paradigms, Release 0.4

3.5 Statements

In addition to expressions, imperative programming languages also have statements, which specify some action to be
carried out but do not produce a value. Thus, a statement is executed rather than evaluated. Statements usually modify
the state of a program or the underlying system. These modifications are called side effects.

The syntax of a language determines what constitutes a statement. In the C family of languages, a simple statement is
terminated by a semicolon, while in Python, a newline terminates a simple statement. The following are examples of
simple statements in C++:

x + 1;
x = 3;
foo(1, 2, 3);
a[3] = 4;
return 2;
break;
goto some_label;

Languages also provide syntax for constructing compound statements out of simpler statements and expressions. In
C-like languages, a block is a compound statement composed of a set of curly braces surrounding a suite of zero or
more statements:

{
int x = 10;
int y = x + 3;
cout << x << " " << y << endl;

}

Conditionals and loops are also compound statements, whether they have a block or just an individual statement as a
body.

Some languages make a distinction between statements, declarations, and definitions, since the latter two may not be
executed at runtime. A declaration introduces a name into a program, as well as properties about the entity it refers to,
such as whether it refers to a function or data and what its type is. A definition additionally specifies the data or code
that the name refers to. In Java, every declaration is also a definition, so the two terms are often used interchangeably.
In C and C++, however, a declaration need not be a definition, as in the following:

extern int x;
void foo(int x, int y, int z);
class SomeClass;

Python does not have declarations, and definitions are statements that are executed.

3.5. Statements 16

CHAPTER

FOUR

NAMES AND ENVIRONMENTS

Names are the most fundamental form of abstraction, providing a mechanism to refer to anything from simple data
values, to complex sets of data and behavior in object-oriented programming, to entire libraries in the form of modules.

An important principle is that the scope of a name, or region in which the name maps to a particular entity, should have
a restricted context. For example, if a name defined within the implementation of one function or module were to cause
a conflict with a name defined in another function or module, abstraction would be violated, since implementation
details affect outside code:

void foo() {
int x;

}

void bar() {
double x;

}

Here, even though the name x is repeated, each introduction of the name x should have a context that is restricted to
the individual functions.

Scope is a feature of source code, and it determines what entity a name refers to within the source code. If the name
refers to an object whose value is not known until runtime, then the program must defer part of the lookup process
until runtime. The mapping of names to objects in each scope region is tracked in a data structure called a frame or
activation record. The collective set of contexts active in a program is called the environment. A name is bound to an
object in a frame or environment if the frame maps that name to the object.

Names that do not map to objects are generally not tracked in activation records. Instead, the compiler or interpreter
can determine the entity that the name refers to from the source code itself. However, due to the strong connection
between scope regions and frames, we often discuss the name-resolution process in the context of frames, even if the
actual lookup process happens at compile time.

Though a name is used as an abstraction for an entity, the name itself is distinct from the entity it names. In particular,
the same name can refer to different entities in different code contexts, as in the example above. A single entity may
also have multiple names that refer to it, as in the following C++ code:

int main() {
int x = 3;
int &y = x;
y = 4;
cout << x; // prints 4

}

In this example, both x and y refer to the same object at runtime, so they alias each other.

Similarly, the same name can refer to different objects in different runtime contexts:

17

Programming Language Principles and Paradigms, Release 0.4

int baz(int x) {
int y = x + 1;
return y;

}

int main() {
cout << baz(3) << endl;
cout << baz(4) << endl;

}

The names x and y defined in baz() refer to distinct pairs of objects, with their own lifetimes, within the context of
the two separate calls to baz().

Every language defines a set of built-in names that are available to the programmer at program start. These include
names for primitive types, built-in functions or modules, and pre-defined constants. A user can also introduce a name
through a declaration or definition, as discussed in the previous section.

It is also important to note that names are not actually necessary to do computation. In fact, all programs could be
written without names (as with Turing machines). Names, however, provide an abstraction that is easily used and
incredibly useful for the programmer.

4.1 Blocks

Blocks are a fundamental unit of program organization common to most languages. A block is a section of program
text that contains name bindings that are local to the block. Thus, a block corresponds to a frame in the environment.

Languages generally have two types of blocks: a block that corresponds to the body of a function, and an inline block
that is not the body of a function but is nested in another block. Some languages, such as Python and Pascal, do not
have inline blocks that contain their own bindings.

The syntax that introduces a block depends on the language, though a common feature is separate syntax that indicates
the beginning and end of a block. For example, in the ALGOL family, a block starts with begin and ends with end,
while in the C family, left and right braces indicate the start and end of a block. An interesting case is the Lisp family,
including Scheme, which has special let constructs to introduce a frame:

(let ((x 3) (y 4))
(display (+ x y))
(display (- x y))

)

This code first binds x to 3 and y to 4 and then prints their sum and difference. As we will see later, this is generally
implemented by translating the let into a function that has parameters x and y:

((lambda (x y)
(display (+ x y))
(display (- x y))

) 3 4)

Here, lambda introduces an unnamed function, a concept we will return to later. Thus, Lisp does not actually have
inline blocks, as any such blocks are really just function blocks.

Inline blocks are by definition nested inside other blocks, resulting in inner frames that are enclosed by outer frames.
This means that the code inside the inner block exists in the context of multiple frames, and a well-defined lookup
procedure is required to determine the meaning of a name.

4.1. Blocks 18

Programming Language Principles and Paradigms, Release 0.4

Blocks associated with functions also result in nested frames, but there are complications that arise, so we will defer
discussion of them until later.

4.2 Name Lookup

We first consider a general rule for how name lookup should proceed in an environment with nested frames. Consider
an environment that consists of the frames (A (B (C))), with B nested inside of A and C nested inside of B. This can
result from code with nested regions of scope, as in the following in C++:

int main(int argc, char **argv) { // frame A
int x = 3;
int y = -1;
if (argc > x) { // frame B
int y = stoi(argv[x]);
if (y > x) { // frame C
int x = argc;
int z = y - x; // which x and y?
cout << z;

}
}

}

What should the process be for looking up the name x in the context of C? If the name x exists in only one of the active
frames A, B, or C, there is no possibility of ambiguity as to which binding x refers to. On the other hand, if x is bound
in more than one frame, as in the example above, then a decision needs to be made as to which binding it refers to. The
standard rule is that lookup prefers the innermost binding. Thus, since x is bound in C, that binding is preferred even
if though it is also bound in A. On the other hand, y is not bound in C, so looking up y in the context of C prefers the
binding in B over the one in A. Finally, looking up argc in C finds it in neither C nor B, so the binding in A is used.

Thus, the standard lookup procedure is to search for a name in the innermost frame (or scope) and only proceed to
the next one if the name is not found. This process is then recursively applied to that next frame (or scope). We often
illustrate this process by drawing links between frames, as in Figure 4.1.

A name is said to be overloaded if it refers to multiple entities in the same scope. A language that allows overloading
must specify further rules on how the lookup process chooses between the applicable entities. For example, in the case
of overloaded function names, the arguments of a function call can be compared to the parameter types of each overload
to determine which one is the most appropriate:

void foo(int x);
int foo(const string &s);

int main() {
foo(3); // calls foo(int x)
foo("hello"); // calls foo(const string &s)

}

In some languages, name lookup takes into account how the name is used in order to disambiguate between entities
defined in different scopes. For example, the following is valid Java code:

class SomeClass {
public static void main(String[] args) {
int main = 3;
main(null); // recursive call

(continues on next page)

4.2. Name Lookup 19

Programming Language Principles and Paradigms, Release 0.4

C
x: 4
z: 0

B
y: 4

A
argc: 4
argv:

x: 3
y: -1

"a.exe"

"b" "c"

"4"

Figure 4.1: An environment corresponding to a set of nested scopes.

(continued from previous page)

}
}

Even though the name main is defined in the innermost scope to be a variable of type int, its use in a function call
causes the compiler to look for a function named main, disregarding the variable of the same name. A candidate
function is found in the enclosing scope, so that is what the name-lookup procedure produces.

4.3 Nested Inline Blocks

Now that we have a general rule for looking up names in nested frames, let us consider the environments that correspond
to nested inline blocks. Each block corresponds to a frame, resulting in an environment with nested frames. The
visibility rules of names within nested blocks thus match the general rule discussed above. A name introduced by a
block is visible within a block nested inside of it, unless the nested block redefines the name. In this case, the former
binding is hidden or shadowed by the latter.

Consider the following example in a C-like language:

{
int x = 0;
int y = 1;
{
int x = 2;
int z = 3;

}
}

The binding of x introduced by the outer block is not visible in the inner block, since the inner block redefines the name

4.3. Nested Inline Blocks 20

Programming Language Principles and Paradigms, Release 0.4

x. However, the binding of y is visible in the inner block, since y is not redefined. Finally, the name z is only visible
in the inner block, since the outer block is not nested inside the inner.

4.4 Scope in Functions

Functions introduce an element of choice that is not present in inline blocks. An inline block is both textually nested
inside an outer block, and its execution takes place during the execution of the outer block. On the other hand, the
program text in which a function is defined is distinct from the context in which it is called. Consider the following
code in a C-like language:

int x = 0;

void foo() {
print(x);

}

void bar() {
int x = 1;
foo();

}

The function foo() is textually located at top-level, or global, scope. However, it is called from within the block
associated with the function bar(). So which x is visible within foo(), and what value is printed?

Either binding of x, and therefore either the value of 0 or 1, is a valid choice depending on the sequence of frames that
make up the environment in foo(). The two choices are known as static (lexical) scope and dynamic scope, and they
are illustrated in Figure 4.2.

foo()

global
x: 0

bar()
x: 1

foo()

global
x: 0

bar()
x: 1

Static Scope Dynamic Scope

Figure 4.2: Environment structure in static and dynamic scope.

4.4. Scope in Functions 21

Programming Language Principles and Paradigms, Release 0.4

Before considering each of the choices in more detail, let us define some terminology common to both schemes. The
local environment of a function consists of the subset of the environment that is local to the function. This includes
parameter names and all names defined in the context of the function body. The global environment consists of names
defined at the top-level of a program, either at global or module scope depending on the language. Finally, the non-local
environment of a function consists of those names that are visible from a function but are neither local to the function
nor at global or module scope. It is in what constitutes the non-local environment that static and dynamic scope differ.

For both types, looking up a name follows the general rule we introduced above; the local environment is checked first,
followed by the non-local environment, followed by the global environment.

4.5 Static Scope

In static or lexical scope, the environment at any point in a program can be deduced from the syntactic structure of
the code, without considering how the computation evolves at runtime. In this scheme, the non-local environment of
a function consists of those non-global bindings that are visible in the program text in which the function definition
appears.

Considering the example above, the definition int x = 0 introduces a binding of x into the global environment. The
definition of foo() is located in the context of the global frame, so it has no non-local bindings. Therefore, the binding
of x that is visible in foo() is the one defined at global scope, so the value 0 is printed.

A more interesting case of static scope arises in languages that allow the definition of functions inside other functions.
This set of languages includes the Lisp family, Python, Pascal, and to a limited extent, newer versions of C++ and Java.
Let’s consider a concrete example in Python:

x = 0

def foo():
x = 2

def baz():
print(x)

return baz

def bar():
x = 1
foo()() # call baz()

bar()

This program calls the function baz() that is defined locally in the context of foo(), while the call itself is located in
the context of bar(). The global environment consists of the binding of x to 0 at the top-level, as well as bindings of
the names foo and bar to their respective functions. There are no bindings in the local environment of baz(). Static
scoping requires that the non-local environment of baz() be the environment in which its definition textually appears,
which is the environment frame introduced by the function foo(). This frame contains a binding of x to 2. Following
our lookup procedure, the value 2 is printed out since the non-local binding of x is the one that is visible.

Figure 4.3 shows a visualization of the environment, as illustrated by Python Tutor.

Since function definitions are statements in Python that bind the given name to a function object, they introduce bindings
in the frame in which the function is defined. Python Tutor visualizes the non-local parent of a locally defined function
by naming the parent frame and annotating the function with the name of the parent frame, as in [parent=f2]. If this
is elided, then the parent frame is the global frame. Thus, the non-local environment of the call to baz() is the frame
for the call to foo(), while the parent frame of the latter is the global frame.

4.5. Static Scope 22

http://www.pythontutor.com/

Programming Language Principles and Paradigms, Release 0.4

Objects

function

foo()

function

bar()

function

baz() [parent=f2]

How do I use this?

Nobody is currently asking for help using the "Get live help!" button.

Print output (drag lower right corner to resize)

Frames

Global frame

x 0

foo

bar

bar

x 1

f2: foo

baz

x 2

Return
 value

baz [parent=f2]

Click the button above to create a permanent link to your visualization. To report a bug, paste the link along with a
brief error description in an email addressed to philip@pgbovine.net

To embed this visualization in your webpage, click the 'Generate embed code' button above and paste the resulting
HTML code into your webpage. Adjust the height and width parameters and change the link to https:// if needed.

Python Tutor (code on GitHub) supports seven languages (despite its name!):

1. Python 2.7 and 3.6 with limited module imports and no file I/O. The following modules may be imported: bisect,
collections, copy, datetime, functools, hashlib, heapq, itertools, json, math, operator, random, re, string, time,
typing, io/StringIO. Backend source code.

2. Java using Oracle's Java 8. The original Java visualizer was created by David Pritchard and Will Gwozdz. It
supports StdIn, StdOut, most other stdlib libraries, Stack, Queue, and ST. (To access Java's builtin Stack/Queue
classes, write import java.util.Stack; — note, import java.util.*; won't work.) Backend source code.

3. JavaScript running in Node.js v6.0.0 with limited support for ES6. Backend source code.

4. TypeScript 1.4.1 running in Node.js v6.0.0. Backend source code.

5. Ruby 2 using MRI 2.2.2. Backend source code.

6. C using gcc 4.8, C11, and Valgrind Memcheck. Backend source code.

7. C++ using gcc 4.8, C++11, and Valgrind Memcheck. Backend source code.

Privacy Policy: By using Online Python Tutor, your visualized code, options, user interactions, text chats, and IP
address are logged on our server and may be analyzed for research purposes. Nearly all Web services collect this
basic information from users. However, the Online Python Tutor website (pythontutor.com) does not collect any
personal information or session state from users, nor does it issue any cookies.

Use this website at your own risk. The developers of Python Tutor are not responsible for the chat messages or
behaviors of any of the users on this website. We are also not responsible for any damages caused by using this
website.

Copyright © Philip Guo. All rights reserved.

Python 3.6

1 x = 0
2
3 def foo():
4 x = 2
5
6 def baz():
7 print(x)
8
9 return baz
10
11 def bar():
12 x = 1
13 foo()() # call baz()
14
15 bar()

Edit code | Live programming
 line that has just executed
 next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.

 Step 14 of 16

Visualized using Python Tutor by Philip Guo (@pgbovine)

Help us improve this tool by clicking below whenever you learn something:

Figure 4.3: Illustration of environment using static scope.

4.5. Static Scope 23

Programming Language Principles and Paradigms, Release 0.4

Note that the binding of x to 1 introduced by bar() does not appear anywhere in the environment of baz(), since the
definition of baz() is not textually located inside of bar().

Most modern languages use static scope, since it tends to be more efficient than dynamic scope, as the lookup process
can be facilitated by the compiler. Static scope also generally makes it easier for programmers to reason about the code,
since they don’t have to trace through the execution in order to figure out what a name refers to.

4.6 Dynamic Scope

In dynamic scope, the environment at any point in a program is dependent on how execution evolves at runtime. The
non-local environment of a function consists of those bindings that are visible at the time the function is called. This
rule is applied recursively, so that a sequence of function calls results in a sequence of frames that are part of the
non-local environment of the innermost function call.

As a concrete example, consider the following C-like code:

int x = 0, y = 1;

void foo() {
print(x);
print(y);

}

void bar() {
int x = 2;
foo();

}

int main() {
int y = 3;
bar();
return 0;

}

The global environment includes the bindings of x to 0 and y to 1. When execution starts at main(), its environment
consists of the global frame and the local frame that it introduces that binds y to 3. In the call to bar(), the environment
of bar() consists of the global frame, the non-local frame of main(), and the local frame of bar(). Finally, in the
call to foo(), the environment of foo() consists of the global frame, the non-local frame of main(), the non-local
frame of bar(), and the local frame of foo(). Name lookup starts in the innermost frame and proceeds outward until
it finds a binding for the name. A binding for x is found in the frame of bar(), and for y in the frame of main(), so
that the values 2 and 3 are printed.

Dynamic scope can be simpler to implement than static, since the frames in an environment correspond exactly to the
set of frames that are active during program execution. However, it can result in behavior that is less obvious from
reading the code, as it requires tracing out the runtime execution of the code to understand what it does. As a result,
few modern languages use dynamic scope.

Languages that allow functions themselves to be passed as arguments introduce a further complexity when it comes to
dynamic scope in the form of binding policy. We will defer discussion of binding policy until we examine higher-order
functions.

4.6. Dynamic Scope 24

Programming Language Principles and Paradigms, Release 0.4

4.7 Point of Declaration or Definition

The rules we’ve described thus far do not fully specify name lookup and visibility in languages that allow names to be
introduced in the middle of a block. In particular, does the scope of a name start at the beginning of the block in which
it is introduced or at the point of introduction? Consider the following C-like code:

int foo() {
print(x);
int x = 3;

}

Is this code valid? The initialization of x occurs after the print, so allowing code like this would result in undefined
behavior.

The C family of languages avoids this problem by stating that the scope of a name begins at its point of declaration and
ends at the end of the block in which the declaration appears. Thus, the code above would be a compile-time error. On
the other hand, consider the following:

int x = 2;

int foo() {
print(x);
int x = 3;

}

Since the local binding of x is not in scope at the print call, the global binding of x is visible and the value 2 is printed.

Python, however, does not follow this rule. If a name is defined within a function body, then its scope starts at the
beginning of the body. However, it is illegal to reference the name before its initialization. Thus, the following code is
erroneous:

x = 2

def foo():
print(x)
x = 3

foo()

This results in an error like the following:

UnboundLocalError: local variable 'x' referenced before assignment

Suppose the intent of the programmer in the code above was to modify the binding of x in the global environment
rather than to introduce a new binding in the local frame. Python enables the programmer to specify this intent with
the global statement:

x = 2

def foo():
global x # specify that x refers to the global binding
print(x)
x = 3

(continues on next page)

4.7. Point of Declaration or Definition 25

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

foo()
print(x)

The code now prints out the value 2, modifies the global x to be bound to 3, and prints out 3. A similar nonlocal
statement is available to specify that a name refers to a binding in the non-local environment.

A final consideration is how to handle scope in the context of mutually recursive functions or classes. Consider the
following code:

int foo(int x) {
return bar(x + 1);

}

int bar(int x) {
return foo(x - 1);

}

Ignoring the fact that the code does not terminate, the scope rules we described for the C family do not permit this
code, since bar() is not in scope when foo() is defined. C and C++ get around this problem by allowing incomplete
declarations:

int foo(int x) {
int bar(int); // incomplete declaration of bar
return bar(x + 1);

}

int bar(int x) {
return foo(x - 1);

}

Java, on the other hand allows methods and classes to be used before they are declared, avoiding the need for incomplete
declarations. Similarly, older versions of C allowed functions to be used before declaration, though this was prone to
error due to how such uses were handled in the compiler and linker.

4.8 Implementation Strategies

A binding is an association between a name and an object, making an associative container such as a dictionary a
natural abstraction for keeping track of bindings. A dictionary-based implementation strategy can represent each frame
with its own dictionary, as well as a pointer to the next outer frame, if there is one. Adding bindings and looking up
names can be done dynamically by inserting new entries into frames at runtime or searching through the list of frames
for an entry that matches a given name.

Static languages often take a more efficient approach of translating a name to an offset in a frame at compile time. This
strategy requires static scope so that names can be resolved to frames by the compiler. As an example, consider the
following code written in a C-like syntax, but with nested function definitions:

int foo(int x) {
double y = x + 3.1;

double bar(double x) {
return x - y;

}
(continues on next page)

4.8. Implementation Strategies 26

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

return bar;
}

foo(3)(4); // evaluates to -2.1

A compiler can examine the code in foo() to determine how much space its activation record requires, factoring in
parameters, local variables, temporaries, and control data. It can then associate each variable with a specific offset in
the activation record, as in Figure 4.4.

0 x
8 outer frame	

pointer

16 other	data

bar()

0 x
4 y

12 other	data

foo()

Figure 4.4: An offset-based layout scheme associates fixed offsets with individual pieces of data.

The value of x in the scope of foo() is stored at offset zero from the beginning of the activation record, while the value
of y is stored at offset four. In the activation record for bar(), its parameter x is stored at offset zero, while a pointer
to the invocation’s next outer frame is stored at offset eight. (Alternatively, a direct pointer to the memory location
for y can be stored, rather than a pointer to the activation record containing y.) Figure 4.5 shows the actual activation
records created by the invocations foo(3)(4).

0 4.0
8

16 other	data

bar(4)

0 3
4 6.1

12 other	data

foo(3)

Figure 4.5: Data stored using an offset-based layout.

When the compiler generates code for the body of bar(), the reference to x is translated to an offset of zero into the
activation record for bar(), while the reference to y is translated into first retrieving the outer frame pointer from offset
eight in the activation record for bar(), followed by an offset of four in the outer frame. Thus, the values 4.0 and 6.1
are retrieved for x and y, respectively, resulting in a difference of -2.1.

The offset-based implementation requires only a single memory access for a local variable, as opposed to a dictionary

4.8. Implementation Strategies 27

Programming Language Principles and Paradigms, Release 0.4

lookup in a dictionary-based implementation. For a local variable in the 𝑛th other frame, an offset-based strategy
requires 𝑛 memory accesses, while a dictionary-based scheme does 𝑛 dictionary lookups. A memory access is likely
to be much more efficient than a dictionary lookup, resulting in better performance for offset-based implementations.

4.8. Implementation Strategies 28

CHAPTER

FIVE

CONTROL FLOW

We now turn our attention to the problem of managing the sequence of actions that take place in a program. Sequencing
is of particular importance in imperative programming; in this paradigm, each programming construct specifies some
action to be taken, and the flow of control between constructs is instrumental to the meaning of a program.

5.1 Expression Sequencing

As we saw in Expressions, the order in which subexpressions are evaluated is a consideration in the evaluation of a
compound expression, though a well-defined order is most important in languages that allow expressions to have side
effects. Here, we consider some cases in which the evaluation semantics are of particular importance.

5.1.1 Short Circuiting

Consider a conditional of the following form in C++:

if (x != 0 && foo(x)) {
...

}

If the order of evaluation of the operands to the && operator were left up to the implementation, it would be legal to
evaluate the call to foo() on the right-hand side before the comparison with 0 on the left-hand side. This is problematic
in two cases. First, if foo() requires that its argument is non-zero, such as in the case that it uses the argument as a
divisor, then its evaluation can lead to a runtime error or, even worse, undefined behavior. Second, if foo() performs
a very expensive computation, then it would be unnecessarily computed in the case that x is 0.

To address these problems, boolean operators in many languages evaluate their left-hand operand before the right-
hand one and are also short circuiting. This means that the right-hand side is not computed if the overall value of the
expression can be determined from the left-hand side alone. This is the case in conjunction (logical and) if the left-hand
side evaluates to a false value, and in disjunction (logical or) if it evaluates to a true value.

A similar situation occurs with ternary conditional operators, such as ?: in the C family:

int y = (x != 0 ? z / x : 0);

Here, if x is 0, the the second operand is not computed, and y is set to 0. On the other hand, if x is not 0, then the
second operand is computed but not the third, so y is set to the value obtained by dividing z by x.

29

Programming Language Principles and Paradigms, Release 0.4

5.1.2 Explicit Sequences

Some languages provide an explicit mechanism for chaining expressions in an ordered sequence. Generally, the result
of the expression sequence as a whole is the result of the last expression in the sequence. In C and C++, the comma
operator sequences expressions in this manner:

int x = (3, 4);
cout << x;

This prints out the value 4, since the expression 3, 4 evaluates to 4. Similarly, in the Lisp family, the begin form
chains expressions together:

(begin (+ 1 3) (/ 4 2))

5.1.3 Compound Assignment

In the evaluation of compound-assignment operators, the number of times the left-hand side is evaluated can affect the
result in the presence of side effects. In most languages with compound assignment, the following two operations are
not equivalent in general:

x += 1
x = x + 1

The difference is that in the first case, the expression x is only evaluated once, while in the second, it is evaluated twice.
As a concrete example of where the results differ, consider the following Python code:

def foo(values):
values.append(0)
return values

mylist = []
foo(mylist)[0] += 1

This results in mylist being equal to [1]. On the other hand, consider the following:

mylist = []
foo(mylist)[0] = foo(mylist)[0] + 1

Here, mylist ends up equal to [1, 0]. Thus, the two operations are not equivalent.

5.2 Statement Sequences

Statements by their very nature generally have side effects, so their order of execution is of fundamental importance
in imperative programming. Imperative languages generally specify that statements execute in the order in which they
appear in the program text1.

Sequences of statements are often grouped in the form of blocks, which can appear in contexts where a single statement
is expected. Some languages, such as Python, restrict where a sequence of statements can appear, such as the body of
a structured control statement. Python uses the term suite for such a sequence rather than block.

1 The compiler or interpreter can reorder operations if it can prove that the reordered execution is semantically equivalent to the original sequence.
In single-threaded programs, this reordering is generally not observable, but it can have tangible effects in parallel programs. However, we will not
discuss the details here.

5.2. Statement Sequences 30

Programming Language Principles and Paradigms, Release 0.4

A language’s syntax specifies how statements are separated in a block or a sequence. Two common strategies are to use
a separator character between each statement, or to require that all statements be terminated by a particular character.
For example, if a semicolon is used to separate statements, a sequence of statements could have the following structure:

S_1; S_2; ... ; S_N

On the other hand, if a semicolon is used to terminate the statements, the sequence would have the following form:

S_1; S_2; ... ; S_N;

The key difference is that in the second case, the last statement would require a terminating semicolon.

5.3 Unstructured Transfer of Control

Many languages provide a simple mechanism for transferring control in the form of a goto. This is generally used in
conjunction with a label that specifies which statement is to be executed next. For example, the following C code prints
integers in sequence starting at 0:

int x = 0;
LOOP: printf("%d\n", x);
x++;
goto LOOP;

The code initializes x to 0 and proceeds to print it out. It then increments x and transfers control back to the print
statement.

Goto statements are a very low-level mechanism of control, usually mapping directly to a direct jump instruction in
machine code. However, on their own, simple gotos are insufficient to implement most algorithms since they do not
provide any branching. The example above is an infinite loop and also suffers from integer overflow, resulting in
the values wrapping around. In some languages, variants of goto exist that do provide branching capability, such as
computed goto in older versions of FORTRAN. Machine code often provides branching through the use of indirect
jump instructions.

While the various forms of goto are very powerful, they are also open to abuse, resulting in incomprehensible spaghetti
code that makes it difficult to follow the control flow in a program. Part of the problem is that this unstructured form
of transferring control is not amenable to conventions for improving readability, such as indentation. In the example
above, all statements occur at the same level, and it is not visually obvious where the loop is. This is even more of a
problem when the goto is many lines away from the label that it references. And if a piece of code has many labels and
many gotos, drawing out the set of possible paths through the code can result in a mess, resembling a plate of spaghetti.

Another problem with goto is how to handle the initialization or destruction of local variables when control passes into
or out of a block. We will see more details about initialization and destruction shortly, but languages such as C++ with
complicated initialization and destruction semantics often place restrictions on how goto can be used.

While goto is very powerful, it is not necessary for any algorithm. As a result, it is common practice to discourage the
use of gotos, and some languages do not include it in their set of control constructs.

There are a few cases, however, where goto or a restricted version of it can result in simpler and more readable code.
However, an example must wait until after we discuss structured control constructs.

5.3. Unstructured Transfer of Control 31

Programming Language Principles and Paradigms, Release 0.4

5.4 Structured Control

Modern languages provide higher-level control constructs than goto, allowing code to be structured in a more readable
and maintainable way. The most basic constructs are those for expressing conditional computation and repetition, two
features required for a language to be Turing complete, meaning that the language is equivalent in computational power
to Turing machines.

5.4.1 Conditionals

We have already seen the ternary conditional operator provided by some languages for conditional evaluation of ex-
pressions. Imperative languages provide an analogous construct for conditional execution of statements in the form of
the if statement, which has the general form:

if <test> then <statement1> else <statement2>

Here, <test> is an expression that has a boolean value; depending on the language, this expression may be required to
be of the boolean type, or the language may allow conversions of other types to a boolean value. If the resulting value
is true, then <statement1> is executed. Otherwise, <statement2> is executed.

Often, languages allow the else branch to be elided:

if <test> then <statement>

However, this can lead to the dangling else problem. Consider the following example:

if <test1> then if <test2> then <statement1> else <statement2>

The grouping of the branches can be interpreted as either of the following:

if <test1> then (if <test2> then <statement1> else <statement2>)
if <test1> then (if <test2> then <statement1>) else <statement2>

Some languages resolve this ambiguity by specifying that an else belongs to the closest if. Others formulate their
syntax to avoid this problem by explicitly indicating where a branch starts and ends.

Another common language feature is to provide a cascading form of if. The following is an example in C:

if (<test1>) <statement1>
else if (<test2>) <statement2>
...
else if (<testN>) <statementN>
else <statementN+1>

As another example, Python also provides an equivalent form, but with the keyword elif rather than else if.

A cascading if acts as a conditional with more than two branches. Though it can always be rewritten as a sequence of
nested if statements, the cascaded form can improve readability by making it visually clear what the disjoint branches
are.

A similar, though often more restricted, form of multiple branching is provided by the case or switch statement. It has
the following general form:

switch <expression>:
case <value1>: <statement1>
case <value2>: <statement2>

(continues on next page)

5.4. Structured Control 32

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

...
case <valueN>: <statementN>
default: <statementN+1>

The switch expression is evaluated, and then its value is compared to those specified in the case branches. If the
value matches one of the branches, then that branch is executed. If the value does not match the value in any case
branch, then the default branch is executed.

There are many variations in both the syntax and the exact semantics of a switch statement. Usually, the values in the
case branches must be compile-time constants, restricting the set of types that the switch expression may have. Some
languages allow multiple alternative values to be specified for a single case. Depending on the language, execution of
the case branches may be disjoint, or execution from one branch “falls” into the next branch unless an explicit break
or goto is present. Often, the default branch may be elided. In some languages, such as Swift, eliding the default
clause requires the combination of the case branches to cover all possible values that can be provided to the switch.

Part of the motivation for providing separate if and switch statements is that the latter often can be implemented
more efficiently. More importantly, however, is that the two constructs are more suitable for different situations. The
switch statement is ideal for when execution can follow multiple discrete paths based on the value of an expression
that isn’t necessarily true or false, while the if statement is appropriate if the flow of execution is determined by a set
of boolean conditions.

5.4.2 Loops

Loops are a common mechanism for repetition in imperative languages. They allow a programmer to specify that a
computation should repeat either a certain number of times, or until some condition is met.

Some languages provide loop constructs that repeat for a bounded number of iterations determined at the beginning
of the loop. Such a construct is actually insufficient to express all algorithms, so languages that only provide bounded
iteration, without some other mechanism such as unbounded loops or gotos, are not Turing complete.

The most general form of unbounded iteration is the while loop:

while <expression> do <statement>

Such a loop tests the expression to see if it is true, and if so, executes the statement and repeats the process.

There are many variations on while loops. Some languages have a form similar to:

do <statement> until <expression>

This repeatedly executes a statement until a condition is met. Another variant is the do while loop:

do <statement> while <expression>

This is the same as do until, except that the control expression is negated. In both forms, the statement is executed
at least once, while a standard while loop need not execute its body.

While the while loop and its variants are general enough to express any form of repetition, it is common enough to
iterate through a sequence that languages often provide syntactic sugar to facilitate the expression of such loops. The
for loop in the C family of languages is one example:

for (<initialization>; <test>; <update>) <statement>

This is, ignoring scope and lifetime details, mostly equivalent to:

5.4. Structured Control 33

Programming Language Principles and Paradigms, Release 0.4

<initialization>;
while (<test>) {
<statement>
<update>

}

Another, more abstract, type of loop is a foreach loop that iterates through the elements in a sequence, with the compiler
inferring the initialization, test, and update. Such a loop may also be called a range-based for loop. The following is
an example in C++11:

template <typename Container>
void print_all(const Container &values) {
for (auto i : values) {
cout << i << endl;

}
}

The function print_all() iterates through all the values in any container that supports the iterator interface and prints
out each value. The Python for loop provides a similar abstraction.

5.4.3 Loop Termination

Normally, a loop terminates when the specified condition no longer holds, or in the case of foreach loops, when the
elements of the sequence are exhausted. However, certain algorithms can be better expressed if a loop can be explicitly
terminated in the middle of its execution. An example is the following C++ function that determines if a particular
value is in an array:

bool contains(int *array, size_t size, int value) {
for (size_t i = 0; i < size; i++) {
if (array[i] == value) {
return true;

}
}
return false;

}

Once a value is found in the array, it is no longer necessary to examine the remaining elements of the array, so the
function returns immediately rather than waiting for the loop to terminate normally.

For the cases where an early termination is desired without immediately returning, a goto may be used in a language
that provides such a construct. For example:

bool found = false;
for (size_t i = 0; i < size; i++) {
if (array[i] == value) {
found = true;
goto end;

}
}
end: cout << "found? " << found << endl;

However, as it is considered desirable to avoid goto wherever possible, many languages provide a restricted break
statement that explicitly exits a loop and proceeds to the next statement:

5.4. Structured Control 34

Programming Language Principles and Paradigms, Release 0.4

bool found = false;
for (size_t i = 0; i < size; i++) {
if (array[i] == value) {
found = true;
break;

}
}
cout << "found? " << found << endl;

A related construct is continue, which merely ends the current loop iteration rather than exiting the loop entirely.

The simple break and continue statements suffice when a single loop is involved. What if, on the other hand, we
have nested loops, such as the following:

for (...) {
for (...) {
if (...) break;

}
}

Which loop does the break statement terminate? As with dangling else, generally the innermost loop is the one that
is terminated. If we wish to terminate the outer loop, however, we are forced to use a goto in C and C++:

for (...) {
for (...) {
if (...) goto end;

}
}
end: ...

Java address this problem by allowing loops to be labeled and providing forms of break and continue that take a
label:

outer: for (...) {
for (...) {
if (...) break outer;

}
}

Some languages, such as Python, do not provide a specific mechanism for terminating or continuing an outer loop and
require code to be refactored in such a case.

5.5 Exceptions

Exceptions provide a mechanism for implementing error handling in a structured manner. They allow the detection of
errors to be separated from the task of recovering from an error, as it is often the case that the program location where
an error occurs doesn’t have enough context to recover from it. Instead, an exception enables normal flow of execution
to be stopped and control to be passed to a handler that can recover from the error.

In general, languages with exceptions provide:

1. A syntactic construct for specifying what region of code a set of error handlers covers.

5.5. Exceptions 35

Programming Language Principles and Paradigms, Release 0.4

2. Syntax for defining error handlers for a particular region of code and specifying the kinds of exceptions they
handle.

3. A mechanism for throwing or raising an exception.

Some languages also provide a means for defining new kinds of exceptions. For example, in Java, an exception must
be a subtype of Throwable, in Python, it must be a subtype of BaseException, and in C++, it can be of any type

An exception may be thrown by the runtime while executing a built-in operation, such as dividing by zero. It may also
be raised directly by the user, with syntax similar to the following:

throw Exception();

This consists of a keyword such as throw or raise indicating that an exception is to be thrown, as well as the exception
value to be thrown. Some languages, such as Python, allow an exception class to be specified instead of an instance.

The code that throws an exception may be in a different function than the code that handles it. Exception handlers are
dynamically scoped, so that when an exception is raised, the closest set of active handlers on the dynamic call stack
handles the exception. If that group of handlers does not handle exceptions of the type that was thrown, then the next
set of handlers on the call stack is used. If the call stack is exhausted without finding an appropriate handler, execution
terminates.

The following is an example in Python:

def average_input():
while True:

try:
data = input('Enter some values: ')
mean = average(list(map(float, data.split())))

except EOFError:
return

except ValueError:
print('Bad values, try again!')

else:
return mean

def average(values):
count = len(values)
if count == 0:

raise ValueError('Cannot compute average of no numbers')
return sum(values) / count

average_input()

The try statement indicates the block of code for which it defines error handlers. If an exception is raised during
execution of the following suite, and that exception is not handled by a try statement further down in the execution
stack, then this try statement attempts to handle the exception. The except headers and their associated suites define
the actual exception handlers, indicating what kinds of exceptions they can handle. When an exception is raised in
the try suite, the type of the exception is compared against the except clauses in sequence, and the first one that can
handle an exception of that type is executed. Thus, only one handler is actually run. The else clause, if present, only
executes if no exception is raised in the try clause.

In this particular example, an exception may be raised by the built-in float() constructor, if the user enters a value
that does not correspond to a float. In this case, a ValueError is raised, and the second except clause is exe-
cuted. If the user enters no values, then average() will directly throw a ValueError. Since the try statement in
average_input() is the closest exception handler on the execution stack, it is checked for an except clause that han-
dles ValueErrors, and the second clause runs. Another case is if the input stream ends, in which case an EOFError

5.5. Exceptions 36

Programming Language Principles and Paradigms, Release 0.4

is raised, resulting in execution of the first except clause. Finally, if the user enter one or more valid values, then no
exception is raised, and the else clause executes, returning the mean.

Python also allows a finally clause to be specified, with code that should be executed whether or not an exception
is raised. Languages differ in whether they provide finally or else clauses. For example, Java provides finally
while C++ has neither.

Exceptions introduce new control paths in a program, and some algorithms make use of them for things other than
error handling. For example, in Python, iterators raise a StopIteration exception when the sequence of values they
contain is exhausted. Built-in mechanisms like for loops use such an exception to determine when the loop should
terminate.

5.6 Avoiding Control Flow

In some cases, it is beneficial to avoid control-flow constructs altogether, relying on higher-level abstractions instead to
achieve better performance or expressibility. We examine a few specific cases where this can be done.

5.6.1 Lookup Tables

Consider the task of counting the number of bits that are set to one in a long bitstring, such as one represented by a
vector<int> in C++, where each int element represents 32 bits (on a typical system). We can iterate over all the
elements, using bit manipulation to count the number of bits set to one in a single element:

std::size_t count(const std::vector<int> &data) {
constexpr int num_bits = sizeof(int) * 8; // 32 for a 4-byte int
std::size_t count = 0;
for (auto item : data) {
for (int i = 0; i < num_bits; ++i) {
count += (item >> i) & 1;

}
}
return count;

}

This implementation uses an inner loop to examine each bit of an int individually. What if we looked at more than
one bit at once? In the extreme case, we could construct a mapping of all possible int values to their counts, but this
would require 232 table entries, which would be very expensive to construct. An intermediate solution is to chop the
int into smaller pieces, say in half, so that we can get by with a smaller lookup table. We can construct the lookup
table as follows:

constexpr int N = 16; // using 16-bit chunks
unsigned table[1 << N];

unsigned count_individual(int data) {
unsigned int tmp = 0;
for (int i = 0; i < N; ++i) {
tmp += (data >> i) & 1;

}
return tmp;

}

void make_table() {
(continues on next page)

5.6. Avoiding Control Flow 37

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

for (int i = 0; i < (1 << N); ++i) {
table[i] = count_individual(i);

}
}

Using 16 bits as our chunk size, we only need a table with 216 = 65, 536 entries, taking up 262KB of memory if
the table stores 4-byte unsigned int values. (We can use another data type such as uint8_t if we want to use less
memory.) Once we have the table, we can now examine 16 bits at a time:

std::size_t count(const std::vector<int> &data) {
constexpr int num_bits = sizeof(int) * 8; // 32 for a 4-byte int
constexpr int mask = (1 << N) - 1;
std::size_t count = 0;
for (auto item : data) {
for (int i = 0; i < num_bits; i += N) {
count += table[(item >> i) & mask];

}
}
return count;

}

This version only has two iterations of the inner loop for 𝑁 = 16, each of which looks at half the int (shifting or
masking off the other half). On an Apple M2 Pro chip, this implementation shows a 3.6x improvement with Clang 15
on a vector of size 16 million compared to the previous one, and 15x improvement with GCC 15 (compiled with -O3
for both Clang and GCC).

In the bit-counting example, we reduced the number of loop iterations but did not entirely eliminate a control-flow
structure. We consider another example where we can excise conditionals using a lookup table. Conway’s Game of
Life is an iterative computation over a 2D grid of cells, with each cell being alive or dead. In each step, the state of a
cell gets updated based on its previous state and that of its neighbors:

• A cell that was alive in the previous step stays alive if it had two or three live neighbors. If it had fewer than two
or more than three live neighbors, it dies from under- or overpopulation.

• A cell that was dead in the previous step becomes alive by reproduction if it had exactly three live neighbors.

Figure 5.1 illustrates these rules on a small grid.

101

010

001

010

011

000

Figure 5.1: Grid update based on the rules for Conway’s Game of Life.

The evolution of the grid depends on the initial state. For some initial states, the population eventually dies out, but for
others, grid may sustain life indefinitely.

To implement this simulation in C++, we can define a Grid class as follows:

5.6. Avoiding Control Flow 38

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Programming Language Principles and Paradigms, Release 0.4

struct Grid {
// Initialize this Grid with the given dimensions and all cells dead.
Grid(int width, int height) :
width_(width), height_(height), data(width * height) {}

// Return the cell at the given position.
int& operator()(int row, int column) {
return data[row * width() + column];

}

int width() const { return width_; }
int height() const { return height_; }

private:
int width_, height_;
std::vector<int> data;

};

We represent the cells as int values, with 0 signifying a dead cell and 1 a live cell. We overload the function-call
operator to access a cell at a given position by reference, so that its value can be read or written.

The simulation itself operates on two Grid objects, one representing the state in the previous timestep, and the second
representing the subsequent timestep. The following implements the algorithm for a single timestep:

// Update the cell values in new_grid based on those in old_grid
// according to the rules for Conway's Game of Life.
void timestep(Grid &old_grid, Grid &new_grid) {
for (int row = 0; row < old_grid.height(); ++row) {
for (int column = 0; column < old_grid.width(); ++column) {
// first, compute how many live neighbors the cell has
int live_neighbors = 0;
if (row > 0) {
if (column > 0) {
live_neighbors += old_grid(row - 1, column - 1);

}
live_neighbors += old_grid(row - 1, column);
if (column < old_grid.width() - 1) {
live_neighbors += old_grid(row - 1, column + 1);

}
}
if (column > 0) {
live_neighbors += old_grid(row, column - 1);

}
if (column < old_grid.width() - 1) {
live_neighbors += old_grid(row, column + 1);

}
if (row < old_grid.height() - 1) {
if (column > 0) {
live_neighbors += old_grid(row + 1, column - 1);

}
live_neighbors += old_grid(row + 1, column);
if (column < old_grid.width() - 1) {
live_neighbors += old_grid(row + 1, column + 1);

(continues on next page)

5.6. Avoiding Control Flow 39

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

}
}
// now apply the update rules
if (live_neighbors == 3

or (live_neighbors == 2 and old_grid(row, column))) {
new_grid(row, column) = 1;

} else {
new_grid(row, column) = 0;

}
}

}
}

Notice that the code above has many conditionals, both for boundary cases and for the update rules for the Game of
Life. We can eliminate the former by introducing ghost cells into our grid, which represent cells just outside the grid
boundaries, allowing us to access them even when we are at a boundary. Figure 5.2 illustrates a grid update when ghost
cells are present.

0 0 0 0 0

0 1 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

Figure 5.2: Grid update with ghost cells for Conway’s Game of Life.

To implement ghost cells, we tweak our Grid implementation as follows:

struct Grid {
// Initialize this Grid with the given dimensions, plus a layer of
// ghost cells around the boundaries, and all cells dead.
Grid(int width, int height) :
width_(width), height_(height),
full_width(width + 2), full_height(height + 2),
data(full_width * full_height) {}

// Return the cell at the given position.
int& operator()(int row, int column) {
return data[(row + 1) * full_width + (column + 1)];

}

int width() const { return width_; }
(continues on next page)

5.6. Avoiding Control Flow 40

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

int height() const { return height_; }

private:
int width_, height_;
int full_width, full_height;
std::vector<int> data;

};

The data representation uses two more rows and columns for the ghost cells, and we offset the given row and column
when accessing a cell to account for the additional ghost cells. Then our timestep computation can be done as follows:

// Update the cell values in new_grid based on those in old_grid
// according to the rules for Conway's Game of Life.
void timestep(Grid &old_grid, Grid &new_grid) {
for (int row = 0; row < old_grid.height(); ++row) {
for (int column = 0; column < old_grid.width(); ++column) {
// first, compute how many live neighbors the cell has
int live_neighbors = (old_grid(row - 1, column - 1) +

old_grid(row - 1, column) +
old_grid(row - 1, column + 1) +
old_grid(row, column - 1) +
old_grid(row, column + 1) +
old_grid(row + 1, column - 1) +
old_grid(row + 1, column) +
old_grid(row + 1, column + 1));

// now apply the update rules
if (live_neighbors == 3

or (live_neighbors == 2 and old_grid(row, column))) {
new_grid(row, column) = 1;

} else {
new_grid(row, column) = 0;

}
}

}
}

We don’t need conditionals anymore at the boundaries, since we have ghost cells that can be accessed even when we
are at a boundary. Furthermore, we can use a lookup table to eliminate the remaining conditional for the update rules.
There are two possibilities for whether or not a cell was previously alive, and eight possibilities for how many live
neighbors it had. The following table holds the new value for each possible combination:

static constexpr int TABLE[2][8] = {
{0, 0, 0, 1, 0, 0, 0, 0}, // cell was dead
{0, 0, 1, 1, 0, 0, 0, 0} // cell was alive

};

We can now use this table to accomplish our update:

// Update the cell values in new_grid based on those in old_grid
// according to the rules for Conway's Game of Life.
void timestep(Grid &old_grid, Grid &new_grid) {
for (int row = 0; row < old_grid.height(); ++row) {
for (int column = 0; column < old_grid.width(); ++column) {

(continues on next page)

5.6. Avoiding Control Flow 41

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

// first, compute how many live neighbors the cell has
int live_neighbors = (old_grid(row - 1, column - 1) +

old_grid(row - 1, column) +
old_grid(row - 1, column + 1) +
old_grid(row, column - 1) +
old_grid(row, column + 1) +
old_grid(row + 1, column - 1) +
old_grid(row + 1, column) +
old_grid(row + 1, column + 1));

// now apply the update rules
new_grid(row, column) =
TABLE[old_grid(row, column)][live_neighbors];

}
}

}

The resulting code is simpler, more maintainable, and typically more performant than the original code with condition-
als.

5.6.2 Other Strategies

We can often rely on abstract data types to provide functionality that would otherwise require a control-flow construct.
The lookup tables we saw above are an example, and more general mapping structures (e.g. maps or dictionaries) can
also be used in the same way. Other data structures can also provide useful functionality for simplifying our code.

As an example, consider a “trick-taking” card game such as Whist, Euchre, or Bridge. These games use a deck of cards,
where each card has a suit (hearts, diamonds, clubs, spades) and a rank (two through ten, jack, queen, king, ace), and
there are complicated rules about which cards are more valuable than others. For instance, such a game may order the
cards as follows:

1. Gameplay-dependent ordering: trump suit > led suit > other suits

2. Standard suit ordering: hearts > diamonds > clubs > spades

3. Rank ordering: ace > king > queen > · · · > 3 > 2

Implementing these rules using conditionals, we may end up with something like the following Python code:

def Card_less(card1, card2, trump, led):
if card1.suit == trump:

return (card2.suit == trump
and card1.rank.value < card2.rank.value)

if card2.suit == trump:
return True

if card1.suit == led:
return (card2.suit == led

and card1.rank.value < card2.rank.value)
if card2.suit == led:

return True
return (card1.suit.value < card2.suit.value

or (card1.suit == card2.suit
and card1.rank.value < card2.rank.value))

This is complicated and error-prone. Instead, we can rely on the fact that Python tuples support lexicographic compar-
ison, allowing us to translate a card into a proxy object that represents the value of the card:

5.6. Avoiding Control Flow 42

https://en.wikipedia.org/wiki/Trick-taking_game
https://en.wikipedia.org/wiki/Whist
https://en.wikipedia.org/wiki/Euchre
https://en.wikipedia.org/wiki/Contract_bridge

Programming Language Principles and Paradigms, Release 0.4

def Card_value(card, trump, led):
return (card.suit == trump, card.suit == led,

card.suit.value, card.rank.value)

We construct a tuple with four elements, ordered by decreasing importance: whether the card has the trump suit, whether
it has the led suit, the standard suit value, and rank value. We can then compare two cards using their corresponding
tuple values:

def Card_less(card1, card2, trump, led):
return (Card_value(card1, trump, led)

< Card_value(card2, trump, led))

The combination of these two functions is clearer and more obviously correct compared to the conditional-based im-
plementation.

In addition to abstract data types, functional patterns allow us to specify computation at a higher level than control-flow
constructs. For instance, we can use std::for_each from the C++ <algorithm> library to print out all the elements
of a sequence, rather than using a loop:

std::for_each(items.begin(), items.end(),
[](auto item) {
std::cout << item << " ";

});

This uses a combination of a higher-order function and a lambda function, which we will discuss in a subsequent unit.

5.6. Avoiding Control Flow 43

CHAPTER

SIX

MEMORY MANAGEMENT

Programs operate on data, which are stored in memory. In general, the set of data in use in a program can differ over
time, and the amount of storage required by a program cannot be predicted at compile time. As a result, a language
and its implementation must provide mechanisms for managing the memory use of a program.

As mentioned in Entities, Objects, and Variables, a data object has a lifetime, also called a storage duration, during
which it is valid to use that object. Once an object’s lifetime has ended, its memory may be reclaimed for use by other
objects. Languages differ from those in which the user is primarily responsible for managing memory to languages
where the compiler (or interpreter) and runtime bear the sole responsibility of memory management.

In languages that allow a user to manually manage the memory of objects, many programming errors result from
incorrectly managing memory. These errors include memory leaks, where a programmer neglects to release memory
that is no longer needed, and dangling references, where an object is still accessible to a program even though the user
has marked the object as dead. Errors relating to memory management can be particularly difficult to detect and debug,
since the resulting behavior depends on the complex interplay between the program and the runtime storage manager
and can be different in separate runs of the program.

There are several strategies that reduce the possibility of errors related to memory management. This usually involves
moving the role of managing memory from the programmer to the language and its implementation. Specific exam-
ples include tying an object’s lifetime to the scope of a variable that references it, and to provide automatic memory
management of objects that are not directly linked with variables.

6.1 Storage Duration Classes

Many languages make distinctions between the storage duration of different objects. This can based on the type of the
object, where its corresponding variable is declared, or manually specified by a programmer. Common storage duration
classes (using C++ terminology) include static, automatic, thread-local, and dynamic.

6.1.1 Static Storage

Variables declared at global scope can generally be accessed at any point in a program, so their corresponding objects
must have a lifetime that spans the entire program. These objects are said to have static storage duration. In addition to
global variables, static class member variables usually also have static storage duration in object-oriented languages.
Some languages, such as C and C++, also allow a local variable to be declared with static storage duration, in which
case the corresponding object is shared among all calls to the associated function.

Since the compiler or linker can determine the set of objects with static storage duration, such objects are often placed
in a special region of memory at program start, and the memory is not reclaimed during execution. While the storage
is pre-allocated, some languages allow the initialization of such objects to be deferred until their first use.

44

Programming Language Principles and Paradigms, Release 0.4

6.1.2 Automatic Storage

Objects associated with local variables often have automatic storage duration, meaning they are created at the start of
the variable’s scope and destroyed upon final exit from the scope. As we saw in Blocks, in many languages, a block is
associated with its own region of scope. Most languages create a new activation record or frame upon entry to a block
to store the local objects declared in the block. This frame is usually destroyed when execution exits the block. It is not
destroyed, however, when control enters a nested block or a function call, since control will return back to the block.

Many languages store activation records in a stack structure. When execution first enters a block, its activation record (or
stack frame) is pushed onto the stack. If control passes to a nested block or called function, a stack frame corresponding
to the new code is pushed on the stack, and execution passes to that code. When execution returns to the original block,
the new stack frame is popped, and the activation record for the original block is again at the top of the stack. When
this block completes, its activation record is popped off, and the local objects contained within are destroyed.

As we will see later, languages that implement full closures for nested function definitions cannot always discard a
frame upon exit from a block, since a nested function may require access to the variables declared in that block. These
languages do not place frames that may be needed later in a stack structure. Instead, they manage frames by detecting
when they are no longer in use and reclaiming them.

6.1.3 Thread-Local Storage

Languages that include multithreading often allow variables to be declared with thread-local storage duration. The
lifetime of their respective objects matches the duration of execution of a thread, so that a thread-local object is created
at the start of a thread and destroyed at its end.

Since multiple threads execute concurrently, each thread needs its own stack for automatic objects and its own memory
region for thread-local objects. These structures are created when a thread begins and are reclaimed when a thread
ends.

6.1.4 Dynamic Storage

Objects whose lifetimes are not tied to execution of a specific piece of code have dynamic storage duration. Such ob-
jects are usually created explicitly by the programmer, such as by a call to a memory-allocation routine like malloc()
or through an object-creation mechanism like new. While creation of dynamic objects is usually an explicit opera-
tion, languages differ in whether the programmer controls destruction of dynamic objects or whether the runtime is
responsible for managing their memory.

Languages with low-level memory-management routines such as malloc() generally have a corresponding free()
call that releases the memory allocated by a call to malloc(). The user is responsible for calling free() on an object
when it is no longer needed.

Some languages with explicit object-creation mechanisms such as new provide an explicit means for object-destruction,
such as delete in C++. As with malloc() and free(), the programmer is responsible for applying delete to an
object when it is no longer in use.

Other languages manage the destruction of objects automatically rather than relying on the programmer to do so. These
languages implement garbage collection, which detects when objects are no longer in use and reclaims their memory.
We will discuss garbage collection in more detail later in this text.

Since the lifetimes of dynamic objects are not tied to a particular scope and their destruction need not occur in an order
corresponding to their construction, a stack-based management scheme is insufficient for dynamic objects. Instead,
dynamic objects are usually placed in a memory region called the heap; the language implementation manages the
storage resources in the heap. We will not discuss techniques for heap management here.

6.1. Storage Duration Classes 45

Programming Language Principles and Paradigms, Release 0.4

6.2 Value and Reference Semantics

Languages differ as to whether the storage for a variable is the same as the object it refers to, or whether a variable
holds an indirect reference to an object. The first strategy is often called value semantics, and the second reference
semantics.

To illustrate the distinction between value and reference semantics, we first examine the semantics of variables in C++.
In C++, declaring a local variable creates an object on the stack, and the object has automatic storage duration. Within
the scope of the variable, it always refers to the same object. Consider the following code:

int x = 3;
cout << &x << endl;
x = 4;
cout << &x << endl;
//Note: x's memory address does not change, even when its value does

The declaration of x creates an association between the name x and a new object whose value is initialized to 3.
Thereafter, as long as x remains in scope, it always refers to that same object. The assignment x = 4 copies the value
from the right-hand side into the object named by the left-hand side, but it does not change which object x refers to.
This can be seen by noting that the address of x remains the same before and after the assignment. Thus, the storage
for the variable x is always the same as the object it refers to. We therefore say that C++ has value semantics.

C++ also has a category of variables called references, which do not have the semantics of allocating memory when
they are created. Instead, they share memory with an existing object. Consider the following:

int x = 3;
int &y = x;
//The following two lines will print the same memory address
cout << &x << endl;
cout << &y << endl;
y = 4;
cout << x << endl; //This prints 4

In this code, the declaration of x creates a new object and initializes it to 3. The declaration of y as a reference does not
create a new object. Instead, y refers to the same memory as x, as can be seen by examining their respective addresses.
Assigning to y changes the value stored in the memory that y refers to, and subsequently examining x shows that its
value also changed, since it shares memory with y. Figure 6.1 is an illustration of what this looks like in memory.

frame
y,x 3

4

Figure 6.1: A reference in C++ refers to the same memory location as an existing object.

Finally, C++ has pointers, which are objects that store the address of another object. A pointer indirectly refers to
another object, and dereferencing the pointer obtains the object it is referring to:

int x = 3;
int *y = &x;
*y = 4;
cout << x << endl;

6.2. Value and Reference Semantics 46

Programming Language Principles and Paradigms, Release 0.4

This code creates a pointer that holds the address of x and then dereferences it to change the value of the corresponding
object. Figure 6.2 illustrates this in memory.

frame
x

y

4
3

Figure 6.2: A pointer refers to an object indirectly by storing the address of that object.

Pointers refer to objects indirectly, so they provide a form of reference semantics. And since they refer to objects
indirectly, it is possible to change which objects they refer to after creation:

int x = 3;
int y = 4;
int *z = &x;
z = &y;
*z = 5;
cout << x << ", " << y << endl;

In this code, the pointer z originally holds the address of x, so it indirectly refers to the object associated with x.
The value of z is then modified to be the address of y, so z now indirectly refers to the object associated with y.
Dereferencing z and modifying the resulting object now changes the value of y instead of that of x. This ability to
change which object a pointer refers to is different than the direct association between names and objects provided by
normal C++ variables and references, which cannot be broken while the name is in scope.

In a language with reference semantics, variables behave in the same manner as C++ pointers. In most cases, the
variable is allocated on the stack but indirectly refers to a dynamic object located on the heap. Thus, the variable has
storage that is distinct from the object it is referencing. This indirect reference can be represented by an address as in
C++ pointers or through a similar mechanism, allowing the association between variables and the objects they reference
to be changed.

As an example of reference semantics, consider the following Python code:

>>> x = []
>>> y = x
>>> id(x)
4546751752
>>> id(y)
4546751752

The variable x is bound to a new list, and then x is assigned to y. The id() function returns a unique identifier for an
object, which is actually the address of the object in some implementations. Calling id() on x and y show that they
refer to the same object. This differs from non-reference variables in C++, which never refer to the same object while
they are in scope. Figure 6.3 is a representation of the Python program in memory.

Now consider the following additional lines of code:

6.2. Value and Reference Semantics 47

Programming Language Principles and Paradigms, Release 0.4

frame
x

y list: []

Figure 6.3: In reference semantics, variables indirectly refer to objects on the heap.

>>> x = []
>>> id(x)
4546749256
>>> id(y)
4546751752

Assigning a new list to x changes which object x is bound to, but it does not change which object y is bound to. This
differs from C++-style references, which cannot change what object they refer to. Instead, the behavior is analogous to
the following pseudocode with C++-style pointers:

list *x = new list();
list *y = x;
x = new list();
cout << x << ", " << y << endl;

The result in memory is shown in Figure 6.4.

frame
x

y list: []

list: []

Figure 6.4: In reference semantics, assigning to a variable changes which object it refers to rather than the value of the
object itself.

The examples above illustrate the key difference between value and reference semantics: In value semantics, assignment
to a variable changes the value of the object that the variable refers to. In reference semantics, however, assignment to
a variable changes which object the variable refers to. The latter can be seen in the following Python example:

>>> lst = [1, 2, 3, 4]
>>> for x in lst:

x = 0
>>> lst
[1, 2, 3, 4]

The assignment to x in the loop changes which object x refers to rather than the value of the object, as illustrated by

6.2. Value and Reference Semantics 48

Programming Language Principles and Paradigms, Release 0.4

Python Tutor in Table 6.1.

Table 6.1: Assignment to a loop variable in Python changes the object
the variable is pointing to, rather than its value.

Objects

int

1

int

2

int

3

int

4

list

0 1 2 3

How do I use this?

Nobody is currently asking for help using the "Get live help!" button.

Frames

Global frame

lst

x

Click the button above to create a permanent link to your visualization. To report a bug, paste the link along with a
brief error description in an email addressed to philip@pgbovine.net

To embed this visualization in your webpage, click the 'Generate embed code' button above and paste the resulting
HTML code into your webpage. Adjust the height and width parameters and change the link to https:// if needed.

Python Tutor (code on GitHub) supports seven languages (despite its name!):

1. Python 2.7 and 3.6 with limited module imports and no file I/O. The following modules may be imported: bisect,
collections, copy, datetime, functools, hashlib, heapq, itertools, json, math, operator, random, re, string, time,
typing, io/StringIO. Backend source code.

2. Java using Oracle's Java 8. The original Java visualizer was created by David Pritchard and Will Gwozdz. It
supports StdIn, StdOut, most other stdlib libraries, Stack, Queue, and ST. (To access Java's builtin Stack/Queue
classes, write import java.util.Stack; — note, import java.util.*; won't work.) Backend source code.

3. JavaScript running in Node.js v6.0.0 with limited support for ES6. Backend source code.

4. TypeScript 1.4.1 running in Node.js v6.0.0. Backend source code.

5. Ruby 2 using MRI 2.2.2. Backend source code.

6. C using gcc 4.8, C11, and Valgrind Memcheck. Backend source code.

7. C++ using gcc 4.8, C++11, and Valgrind Memcheck. Backend source code.

Privacy Policy: By using Online Python Tutor, your visualized code, options, user interactions, text chats, and IP
address are logged on our server and may be analyzed for research purposes. Nearly all Web services collect this
basic information from users. However, the Online Python Tutor website (pythontutor.com) does not collect any
personal information or session state from users, nor does it issue any cookies.

Use this website at your own risk. The developers of Python Tutor are not responsible for the chat messages or
behaviors of any of the users on this website. We are also not responsible for any damages caused by using this
website.

Copyright © Philip Guo. All rights reserved.

Python 3.6

1 lst = [1, 2, 3, 4]
2 for x in lst:
3 x = 0

Edit code | Live programming
 line that has just executed
 next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.

 Step 3 of 10

Visualized using Python Tutor by Philip Guo (@pgbovine)

Help us improve this tool by clicking below whenever you learn something:

Objects

int

1

int

2

int

3

int

4

list

0 1 2 3

int

0

How do I use this?

Nobody is currently asking for help using the "Get live help!" button.

Frames

Global frame

lst

x

Click the button above to create a permanent link to your visualization. To report a bug, paste the link along with a
brief error description in an email addressed to philip@pgbovine.net

To embed this visualization in your webpage, click the 'Generate embed code' button above and paste the resulting
HTML code into your webpage. Adjust the height and width parameters and change the link to https:// if needed.

Python Tutor (code on GitHub) supports seven languages (despite its name!):

1. Python 2.7 and 3.6 with limited module imports and no file I/O. The following modules may be imported: bisect,
collections, copy, datetime, functools, hashlib, heapq, itertools, json, math, operator, random, re, string, time,
typing, io/StringIO. Backend source code.

2. Java using Oracle's Java 8. The original Java visualizer was created by David Pritchard and Will Gwozdz. It
supports StdIn, StdOut, most other stdlib libraries, Stack, Queue, and ST. (To access Java's builtin Stack/Queue
classes, write import java.util.Stack; — note, import java.util.*; won't work.) Backend source code.

3. JavaScript running in Node.js v6.0.0 with limited support for ES6. Backend source code.

4. TypeScript 1.4.1 running in Node.js v6.0.0. Backend source code.

5. Ruby 2 using MRI 2.2.2. Backend source code.

6. C using gcc 4.8, C11, and Valgrind Memcheck. Backend source code.

7. C++ using gcc 4.8, C++11, and Valgrind Memcheck. Backend source code.

Privacy Policy: By using Online Python Tutor, your visualized code, options, user interactions, text chats, and IP
address are logged on our server and may be analyzed for research purposes. Nearly all Web services collect this
basic information from users. However, the Online Python Tutor website (pythontutor.com) does not collect any
personal information or session state from users, nor does it issue any cookies.

Use this website at your own risk. The developers of Python Tutor are not responsible for the chat messages or
behaviors of any of the users on this website. We are also not responsible for any damages caused by using this
website.

Copyright © Philip Guo. All rights reserved.

Python 3.6

1 lst = [1, 2, 3, 4]
2 for x in lst:
3 x = 0

Edit code | Live programming
 line that has just executed
 next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.

 Program terminated

Visualized using Python Tutor by Philip Guo (@pgbovine)

Help us improve this tool by clicking below whenever you learn something:

The left side of Table 6.1 shows the environment at the start of the first iteration, after x is bound to an element of the
list but before it is assigned to 0. Executing the assignment results in the right-hand side, with x rebound but the list
element unaffected. Thus, none of the values in the list are modified.

As can be seen from the previous examples, C++ has value semantics while Python has reference semantics. Java, on
the other hand, has value semantics for primitive types but reference semantics for Object and its subclasses, which
are often called object types or reference types.

6.3 RAII and Scope-Based Resource Management

Programs often make use of complex data abstractions whose implementations allocate memory for their own internal
use. An example is a growable array, such as the vector template in C++ or the list type in Python. These data
structures use a contiguous piece of memory to store elements. When a structure runs out of space, it must allocate a
new region of memory, copy (or move) over the elements, and release the old memory region. This operation is hidden
behind the abstraction barrier of the data structure, and the growable array’s implementation handles its own memory
management.

For languages with garbage collection, an object that internally allocates memory does not pose any problems in most
cases. If the object is no longer in use, the garbage collector can usually detect that the memory it allocated is also no
longer in use. In languages without garbage collection, however, other mechanisms must be used in order to manage
internal resources.

A simple solution is for the interface of a data structure to include a function that must be explicitly called when the
structure is no longer needed, with a name along the lines of close(), release(), or destroy(). This is called the
dispose pattern, and it is well-suited to languages where it is idiomatic to deallocate objects by calling a function such
as free(); since the user must explicitly call free(), calling another function to release the object’s internal resources

6.3. RAII and Scope-Based Resource Management 49

http://www.pythontutor.com/

Programming Language Principles and Paradigms, Release 0.4

does not break the pattern of explicit memory management. The following is an example of how this pattern could be
provided for a data type in C:

typedef struct { ... } vector;

void vector_init(vector *);
void vector_destroy(vector *);

The user would be responsible for calling vector_init() after malloc() and vector_destroy() before free():

vector *v = malloc(sizeof vector);
vector_init(v);
... // use the vector
vector_destroy(v);
free(v);

In some object-oriented languages, this style of resource management is directly integrated in the form of destructors.
A destructor is a special method that is responsible for releasing the internal resources of an object, and the language
ensures that an object’s destructor is called just before the object is reclaimed. Destructors are the analogue of con-
structors: a constructor is called when an object is being initialized, while a destructor is called when an object is being
destroyed.

The semantics of constructors and destructors give rise to a general pattern known as resource acquisition is initializa-
tion, or RAII. This ties the management of a resource to the lifetime of an object that acts as the resource manager, so
perhaps a better name for this scheme is lifetime-based resource management. In the growable array example above, the
constructor allocates the initial memory to be used by the array. If the array grows beyond its current capacity, a larger
memory area is allocated and the previous one released. The destructor then ensures that the last piece of allocated
memory is released. Since the constructor is always called when the growable array is created and the destructor when
it is destroyed, the management of its internal memory is not visible to the user.

The RAII pattern can be used to manage resources other than memory. For example, an fstream object in C++
manages a file handle, which is a limited resource on most operating systems. The fstream constructor allocates a file
handle and its destructor releases it, ensuring that the lifetime of the file handle is tied to that of the fstream object
itself. A similar strategy can be used in a multithreaded program to tie the acquisition and release of a lock to the
lifetime of an object.

When a resource manager is allocated with automatic storage duration, its lifetime matches the scope of its correspond-
ing local variable. Thus, RAII is also known as scope-based resource management. However, RAII can also be used
with dynamic objects in languages that are not garbage collected. We will see shortly why RAII does not work well
with garbage collection.

Since the specific mechanism of RAII is unsuitable for general resource management in garbage-collected languages,
some languages provide a specific construct for scope-based resource management. For example, Python has a with
construct that works with context managers, which implement __enter__() and __exit__() methods:

with open('some_file') as f:
<suite>

The open() function returns a file object, which defines the __enter__() and __exit__() methods that acquire
and release a file handle. The with construct ensures that __enter__() is called before the suite is executed and
__exit__() is called after the suite has executed. Python ensures that this is the case even if the suite exits early due
to an exception or return.

Newer versions of Java provide a variant of try that enables scope-based resource management. Java also has a
synchronized construct that specifically manages the acquisition and release of locks.

6.3. RAII and Scope-Based Resource Management 50

Programming Language Principles and Paradigms, Release 0.4

6.4 Garbage Collection

To avoid the prevalence of memory errors in languages that rely on programmers to manage memory, some languages
provide automatic memory management in the form of garbage collection. This involves the use of runtime mechanisms
to detect that objects are no longer in use and reclaim their associated memory. While a full treatment is beyond
the scope of this text, we briefly discuss two major schemes for garbage collection: reference counting and tracing
collection.

6.4.1 Reference Counting

Reference counting is a pattern of memory management where each object has a count of the number of references
to the object. This count is incremented when a new reference to the object is created, and it is decremented when a
reference is destroyed or modified to refer to a different object. As an example, consider the following Python code:

def foo():
a = object() # object A
b = a
b = object() # object B
a = None
return

A reference-counting implementation of Python, such as CPython, keeps track of the number of references to each
object. Upon a call to foo() and the initialization of a, the object A has a reference count of 1. The assignment of a to
b causes the reference count of A to be incremented to 2. Assigning the new object B to b causes the count of A to be
decremented and the count of B to be 1. Assigning None to a reduces the count of A to 0. At this point, the program no
longer has any way to access the object A, so it can be reclaimed. Finally, returning from foo() destroys the variable
b, so the count of B reduces to 0, and B can also be reclaimed.

Reference counting makes operations such as assignment and parameter passing more expensive, degrading overall
performance. As a result, many language implementations use tracing schemes instead. However, reference counting
has the advantage of providing predictable performance, making it well-suited to environments where the unpredictable
nature of tracing collection can be problematic, such as real-time systems.

Some languages that are not garbage collected provide a mechanism for making use of reference counting in the form
of smart pointers. In C++, the shared_ptr template is an abstraction of a reference-counting pointer. When a
shared_ptr is created, the referenced object’s count is incremented, and when the shared_ptr is destroyed, the
count is decremented. The referenced object is destroyed when the count reaches 0. More details on shared_ptr and
other C++ smart pointers such as unique_ptr and weak_ptr can be found in a handout from EECS 381.

A weakness of reference counting is that it cannot on its own detect when circular object chains are no longer in use.
A simple example is a doubly linked list with multiple nodes, where each node holds a reference to its successor and
predecessor, as shown in Figure 6.5.

Even if the first node is no longer accessible from program code after destruction of the list object on the left, the node
still has a reference count of one since the second node holds a reference to the first. This prevents a reference-counting
algorithm from reclaiming the nodes.

One solution is to provide weak references, which hold a reference to an object without incrementing the object’s
reference count. In the case of a doubly linked list, the reverse links can be represented using weak references so that
they do not affect the reference counts of predecessor nodes.

The weak references in Figure 6.6 are shown as dashed lines. Now if the list object is reclaimed, the first node will no
longer have any non-weak references to it, so its reference count will be zero. Thus, the first node will be reclaimed,
which will then cause the second node’s count to reach zero, allowing it to be reclaimed in turn, and so on.

6.4. Garbage Collection 51

http://www.umich.edu/~eecs381/handouts/C++11_smart_ptrs.pdf

Programming Language Principles and Paradigms, Release 0.4

datum: 1

next:

prev: 0

datum: 2

next:

prev:

datum: 3

next: 0

prev:

size: 3

first:

last:

Figure 6.5: The nodes in a doubly linked list hold circular references to each other.

datum: 1

next:

prev: 0

datum: 2

next:

prev:

datum: 3

next: 0

prev:

size: 3

first:

last:

Figure 6.6: Weak references can be used to refer to the previous node, to avoid incrementing a node’s reference count.

6.4. Garbage Collection 52

Programming Language Principles and Paradigms, Release 0.4

Weak references must be used carefully to ensure that cyclic data structures can be collected. This places a burden on
the programmer, requiring more effort than the tracing schemes below.

6.4.2 Tracing Collectors

More common than reference counting is tracing garbage collection, which periodically traces out the set of objects in
use and collects objects that are not reachable from program code. These collectors start out with a root set of objects,
generally consisting of the objects on the stack and those in static or thread-local storage. They then recursively follow
the references inside those objects, and the objects encountered are considered live. Objects that are not encountered
in this process are reclaimed. For example, if the root set consists of objects 𝐴 and 𝐻 in the object graph in Figure 6.7,
then objects 𝐴 through 𝐾 would be alive while objects 𝐿 through 𝑂 would be garbage.

A

B

F

H I

C

D

G

E

J

K

L M N O

Figure 6.7: Tracing garbage collectors trace references starting at a root set, and objects that are not reachable from the
root set are reclaimed.

There are many variants of tracing collectors. A common pattern is mark and sweep, which is split into separate mark
and sweep phases. Objects are first recursively marked starting from the root set, and when this completes, unmarked
objects are collected. Another pattern is stop and copy, which copies live objects to a separate, contiguous region of
memory as they are encountered. The latter is slower and requires more free space but results in better locality of live
objects. It also reduces the problem of memory fragmentation, where there is sufficient total free space to allocate an
object, but each individual free region of space is too small for the object. However, since objects are moved, it also
requires references and pointers to such objects to be updated, and the runtime must be able to distinguish references
and pointers from other data values.

Tracing collectors often only run when free space is running low, so many programs do not even trigger garbage
collection. Even in programs that do require collection, the amortized cost of tracing collection is often lower than that

6.4. Garbage Collection 53

Programming Language Principles and Paradigms, Release 0.4

of reference counting. On the other hand, the collection process itself can take a significant amount of time, and it can
be problematic if a collection is triggered immediately before an event that the program needs to respond to, such as
user input.

6.4.3 Finalizers

Garbage-collected languages often allow finalizers to be defined, which are analogous to destructors in a language such
as C++. A finalizer is called when an object is being collected, allowing it to release internal resources in the same
manner as destructors. However, finalizers give rise to a number of issues that do not occur in destructors. First, a
finalizer may not be called in a timely manner, particularly in implementations that use a tracing collector, since such
a collector often only collects objects when memory resources are running low. This makes finalizers unsuitable for
managing resources that can be exhausted before memory is. Second, a finalizer may leak a reference to the object
being collected, resurrecting it from the dead. A collector must be able to handle this case, and this also leads to the
question of whether or not a finalizer should be rerun when the resurrected object is collected again. Another issue
with finalizers is that they do not run in a well-defined order with respect to each other, preventing them from being
used where the release of resources must be done in a specific order. Finally, many languages do not guarantee that
finalizers will be called, particularly on program termination, so programmers cannot rely on them.

For the reasons above and several others, programmers are often discouraged from using finalizers for resource man-
agement. Instead, a scope-based mechanism such as the ones discussed previously should be used when available.

6.4. Garbage Collection 54

CHAPTER

SEVEN

GRAMMARS

The grammar of a language specifies what sequences of character constitute valid fragments of the language. Grammar
is only concerned with the structure of fragments, rather than the meaning. As in Levels of Description, the lexical
structure of a language determines what the valid tokens are, and the syntax determines what sequences of tokens are
valid. Here, we consider tools for specifying the lexical structure and syntax of a language.

7.1 Regular Expressions

The lexical structure of a language is often specified with regular expressions. A regular expression is a sequence of
characters that defines a pattern against which strings can be matched.

The fundamental components of a regular expression are the following:

• the empty string, usually denoted by the Greek letter epsilon: 𝜀

• individual characters from the alphabet of a language, such as a or b in the English alphabet

• concatenation, often denoted by listing a sequence of components, such as ab

• alternation, representing a choice between two options, often denoted by a vertical pipe, as in a|b

• repetition with the Kleene star, representing zero or more occurrences of a component, such as in a*

Parentheses can be used to disambiguate application of concatenation, alternation, and the Kleene star. When paren-
theses are elided, the Kleene star has highest priority, followed by concatenation, followed by alternation.

The following are examples of regular expressions, as well as the strings they match:

• 𝑎|𝑏 — matches exactly the strings a and b

• 𝑎*𝑏 — matches the strings containing any number of a‘s followed by a single b, i.e. b, ab, aab, aaab, . . .

• (𝑎|𝑏)* — matches any string that contains no characters other than a or b, including the empty string, i.e. 𝜀, a,
b, aa, ab, ba, bb, aaa, . . .

• 𝑎𝑏*(𝑐|𝜀) — matches strings that contain a single a, followed by any number of b‘s, followed by an optional c,
i.e. a, ac, ab, abc, abb, abbc, . . .

Many regular expression systems provide shorthands for common cases. For example, the question mark ? is often used
to denote zero or one occurrence of an element, so that the last example above could be written as 𝑎𝑏*𝑐?. Similarly, the
plus sign + usually indicates one or more occurrences of an element, so that 𝑎+𝑏 matches the strings ab, aab, aaab, . . .
Other common extensions include a mechanism for specifying a range of characters, shorthand for a set of characters
as well the negation of a set of characters, and escape sequences, such as for whitespace.

As an example, the following regular expression matches an identifier or keyword in C++:

55

Programming Language Principles and Paradigms, Release 0.4

[a-zA-Z_][a-zA-Z_0-9]*

In this particular notation, square brackets denote a set of characters, acting as shorthand for alternation. A dash
specifies a range of characters, so a-z denotes all the ASCII characters between a and z, inclusive. Thus, the regular
expression matches any string that begins with a letter or underscore and follows that with any number of letters,
underscores, or digits.

Figure 7.1: Credit: xkcd

Regular expressions are a very powerful mechanism in searching for and matching patterns. However, they are too
limited to specify many common syntax rules. For example, there is no way to write a regular expression to match
strings of the form 𝑎𝑛𝑏𝑛, strings that contain any number of a‘s followed by the same number of b‘s, such as 𝜀, ab, aabb,
aaabbb, aaaabbbb, . . . This is an even simpler set of strings than that corresponding to matching sets of parentheses,

7.1. Regular Expressions 56

http://xkcd.com

Programming Language Principles and Paradigms, Release 0.4

which include strings such as ()() and (()(())), that are common to many languages.

7.2 Context-Free Grammars

While the lexical structure of a language is often specified using regular expressions, the syntactic structure is generally
specified with a context-free grammar (CFG). A context-free grammar consists of a set of variables, a set of terminals,
and a collection of production rules that specify how variables can be replaced with other variables or terminals. The
start variable is the variable that should be used to begin the replacement process. Variables are replaced until no more
variables remain, leaving just a sequence of terminals.

As a first example, consider the set of strings containing any number of a‘s followed by the same number of b‘s. We
can specify a CFG that matches this set of strings. The terminals consist of the empty string 𝜀, a, and b. We need a
single variable, which we will call S, that will also be the start variable. Then the replacement rules are:

(1) 𝑆 → 𝜀

(2) 𝑆 → 𝑎 𝑆 𝑏

To match a particular string, such as aabb, we begin with the start variable S and recursively apply production rules
until we are left with just terminals that match the string. The following series of applications leads to the target string:

𝑆 → 𝑎 𝑆 𝑏 by application of rule (2)
→ 𝑎 𝑎 𝑆 𝑏 𝑏 by application of rule (2)
→ 𝑎 𝑎 𝑏 𝑏 by application of rule (1)

The sequence of applications above is called a derivation, and it demonstrates that the string aabb is matched by the
CFG above.

As another example, the following CFG defines the set of strings consisting of matching parentheses, where P is the
start variable:

(1) 𝑃 → 𝜀

(2) 𝑃 → (𝑃)

(3) 𝑃 → 𝑃 𝑃

We can derive the string (()) as follows:

𝑃 → (𝑃) by application of rule (2)
→ ((𝑃)) by application of rule (2)
→ (()) by application of rule (1)

We can derive the string ()() as follows:

𝑃 → 𝑃 𝑃 by application of rule (3)
→ (𝑃) 𝑃 by application of rule (2)
→ () 𝑃 by application of rule (1)
→ () (𝑃) by application of rule (2)
→ () () by application of rule (1)

An alternate derivation is as follows:

𝑃 → 𝑃 𝑃 by application of rule (3)
→ 𝑃 (𝑃) by application of rule (2)
→ 𝑃 () by application of rule (1)
→ (𝑃) () by application of rule (2)
→ () () by application of rule (1)

7.2. Context-Free Grammars 57

Programming Language Principles and Paradigms, Release 0.4

Other derivations exist as well. However, the derivations have the same fundamental structure, which we can see by
drawing a derivation tree that represents the recursive application of rules in a tree structure. The first derivation above
has the structure in Figure 7.2.

P

P P

P

P

P

(P)

P

P

P

(P)

ε

P

P

P

(P)

ε

P

(P)

P

P

(P)

ε

P

(P)

ε

Figure 7.2: A derivation of ()() that derives the left set of parentheses first.

The second derivation constructs the same structure in a different order, as shown in Figure 7.3.

The leaves of a derivation tree are terminals, and the in-order traversal is the string that is matched. In both derivations
above, both the in-order traversal as well as the structure of the tree are the same.

Let us consider another grammar, representing arithmetic operations over symbols a and b:

(1) 𝐸 → 𝐸 + 𝐸

(2) 𝐸 → 𝐸 * 𝐸

(3) 𝐸 → 𝑎

(4) 𝐸 → 𝑏

This CFG has the terminals +, *, a, and b, and the variable E, which is also the start variable. Consider the string a +
b * a. We can derive it as follows:

𝐸 → 𝐸 + 𝐸 by application of rule (1)
→ 𝐸 + 𝐸 * 𝐸 by application of rule (2) on the second 𝐸

→ 𝑎 + 𝐸 * 𝐸 by application of rule (3)
→ 𝑎 + 𝑏 * 𝐸 by application of rule (4)
→ 𝑎 + 𝑏 * 𝑎 by application of rule (3)

7.2. Context-Free Grammars 58

Programming Language Principles and Paradigms, Release 0.4

P

P P

(P)

ε

P

P

(P)

P

(P)

ε

P

P P

P

P

P

(P)

ε

P

(P)

ε

P

P P

(P)

ε

Figure 7.3: A derivation of ()() that derives the right set of parentheses first.

Alternatively, we can derive the string as follows:

𝐸 → 𝐸 * 𝐸 by application of rule (2)
→ 𝐸 + 𝐸 * 𝐸 by application of rule (1) on the first 𝐸
→ 𝑎 + 𝐸 * 𝐸 by application of rule (3)
→ 𝑎 + 𝑏 * 𝐸 by application of rule (4)
→ 𝑎 + 𝑏 * 𝑎 by application of rule (3)

The derivation trees corresponding to the two derivations are in Figure 7.4, with the left tree as the result of the first
derivation and the right tree the second.

While both derivation trees have the same in-order traversal, they have a fundamentally different structure. In fact, the
first tree corresponds to the * operator having higher precedence than +, while the second tree is the reverse. Since the
CFG admits both derivations, it is ambiguous.

We can rewrite the CFG to unambiguously give * the higher precedence, but doing so is cumbersome, particularly
when a language has many operators. Instead, languages often resolve ambiguities by specifying precedence rules that
determine which production rule to apply when there is a choice of rules that can lead to ambiguity.

7.3 Grammars in Programming Languages

The syntax of a programming language is usually specified using a context-free grammar. In some languages, the
lexical structure is also specified with a CFG, as every regular expression can be written as a CFG. In languages that
specify the lexical structure with regular expressions, the terminals of their grammars consist of program tokens. On
the other hand, in those that specify the lexical structure with a CFG, the terminals are individual characters.

A language’s context-free grammar is often written in extended Backus-Naur form, which adds convenient shorthands to
the basic form discussed above. In particular, many grammars use notation from regular expressions, such as alternation

7.3. Grammars in Programming Languages 59

Programming Language Principles and Paradigms, Release 0.4

E

E

a

E

E * E

b

+

a

E

E

E + E

E

a

a

*

b

Figure 7.4: The string a + b * a can be derived with two different resulting structures, so the grammar is ambiguous.

and Kleene stars, and the right arrow specifying a production rule is often replaced with an ASCII character such as =
or :.

As an example, the following is a grammar specifying keywords, boolean literals, and identifiers in a C-like language,
with identifiers taking the form of the regular expression [a-zA-z_][a-zA-Z_0-9]*:

Identifier: except Keyword and BooleanLiteral
IdentifierStartCharacter
IdentifierStartCharacter IdentifierCharacters

IdentifierStartCharacter:
_
LowerCaseLetter
UpperCaseLetter

IdentifierCharacters:
IdentifierCharacter
IdentifierCharacters IdentifierCharacter

IdentifierCharacter:
IdentifierStartCharacter
Digit

LowerCaseLetter: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z

UpperCaseLetter: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Digit: one of
0 1 2 3 4 5 6 7 8 9

Keyword: one of
(continues on next page)

7.3. Grammars in Programming Languages 60

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

if else while struct break continue return

BooleanLiteral: one of
true false

The grammar here follows the convention used in the Java language specification. In particular, it uses a colon rather
than a right arrow to specify a production rule, and alternation is specified by placing the different choices on different
lines. Finally, it includes shorthand such as “except” and “one of” to simplify the structure of the grammar.

Here is the Java specification for a C-style comment:

TraditionalComment:
/ * CommentTail

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:
/
* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacter but not *
LineTerminator

NotStarNotSlash:
InputCharacter but not * or /
LineTerminator

This grammar takes care to ensure that a */ sequence terminates a comment, even if it immediately follows other stars,
but that a single star or slash does not do so.

The following is a subset of the Scheme grammar specifying the form of a list:

⟨list⟩ → (⟨datum⟩*) | (⟨datum⟩+ . ⟨datum⟩) | ⟨abbreviation⟩
⟨abbreviation⟩ → ⟨abbrev prefix⟩ ⟨datum⟩
⟨abbrev prefix⟩ → ’ | ‘ | , | ,@

Here, the grammar uses the pipe | to denote alternation. Thus, a list can take the form of zero or more items enclosed
by parentheses, as in the following examples:

()
(+)
(define x 3)

A list can also be a dotted list, with one or more items followed by a period followed by another item, all enclosed
by parentheses. This produces a list that is terminated by the last item rather than by an empty list. Here are some
examples:

(1 . 2)
(a b . c)
(a . (list))

7.3. Grammars in Programming Languages 61

Programming Language Principles and Paradigms, Release 0.4

Finally, a list can take the form of a quotation marker followed by an item:

'hello
`world
,foo
,@bar

These combinations are syntactic sugar for lists representing quotation forms:

(quote hello)
(quasiquote world)
(unquote foo)
(unquote-splicing bar)

7.3.1 Vexing Parse

In a particularly complex language such as C++, ambiguity cannot be avoided in the grammar itself. Instead, external
rules have to be specified for resolving ambiguity. These rules can be based on context that is impossible to capture in
a context-free grammar. For example, in C++, whether or not a name refers to a type is used in disambiguation, and
C++ prefers to disambiguate in favor of a declaration wherever possible. Coupled with the fact that C++ allows names
to be parenthesized even in declarations, this leads to a class of vexing parses.

Consider the following example:

struct foo {
foo() {
cout << "foo::foo()" << endl;

}
foo(int x) {
cout << "foo::foo(" << x << ")" << endl;

}
void operator=(int x) {
cout << "foo::operator=(" << x << ")" << endl;

}
};

int a = 3;
int b = 4;

int main() {
foo(a);
foo(b) = 3;

}

The two lines in main() are interpreted as declarations, not as a call to the constructor in the first line or a call to the
constructor followed by the assignment operator in the second. Instead, the code is equivalent to:

int main() {
foo a;
foo b = 3;

}

A perhaps more vexing case results from the fact that C++ allows parameter names to be elided in a function declaration,
and the elided name can be parenthesized. The following is an example of a function declaration with an elided

7.3. Grammars in Programming Languages 62

Programming Language Principles and Paradigms, Release 0.4

parameter name:

void func(int);

Parenthesizing the elided name results in:

void func(int());

Now consider the following class:

struct bar {
bar(foo f) {
cout << "bar::bar(foo)" << endl;

}
};

Then the following line is ambiguous:

bar c(foo());

This can be the declaration of an object c of type bar, with a newly created foo object passed to the constructor. On the
other hand, it can be the declaration of a function c, with return type bar, that takes in an unnamed parameter of type
foo. In this case, the elided name is parenthesized. The C++ standard requires such a situation to be disambiguated in
favor of a function declaration, resulting in the latter.

The disambiguation above is often referred to as the most vexing parse, and many compilers produce a warning when
they encounter it. For example, Clang reports the following message on the code above:

foo.cpp:29:8: warning: parentheses were disambiguated as a function
declaration

[-Wvexing-parse]
bar c(foo());
^~~~~~~

foo.cpp:29:9: note: add a pair of parentheses to declare a variable
bar c(foo());

^
()

The extra pair of parentheses force the compiler to treat foo() as an expression, resulting in an object declaration
rather than a function declaration.

7.3. Grammars in Programming Languages 63

Part II

Functional Programming

64

Programming Language Principles and Paradigms, Release 0.4

We now turn our attention to procedural abstraction, a strategy for decomposing complex programs into smaller pieces
of code in the form of functions (also called procedures or subroutines; there are subtle differences in how these terms
are used in various contexts, but for our purposes, we will treat them as synonyms). A function encapsulates some
computation behind an interface, and as with any abstraction, the user of a function need only know what the function
does and not how it accomplishes it. A function also generalizes computation by taking in arguments that affect what
it computes. The result of the computation is the function’s return value.

In this unit, we start by introducing Scheme, a functional language in the Lisp family. We then discuss aspects of
functions that are relevant to all procedural languages before proceeding to take a closer look at functional programming,
a programming paradigm that models computation after mathematical functions.

65

CHAPTER

EIGHT

INTRODUCTION TO SCHEME

In this section, we introduce a high-level programming language that encourages a functional style. Our object of study,
the R5RS Scheme language, employs a very similar model of computation to Python’s, but uses only expressions (no
statements) and specializes in symbolic computation.

Scheme is a dialect of Lisp, the second-oldest programming language that is still widely used today (after Fortran). The
community of Lisp programmers has continued to thrive for decades, and new dialects of Lisp such as Clojure have
some of the fastest growing communities of developers of any modern programming language. To follow along with
the examples in this text, you can download a Scheme interpreter or use an online interpreter.

8.1 Expressions

Scheme programs consist of expressions, which are either simple expressions or combinations in the form of lists. A
simple expression consists of a literal or a symbol. A combination is a compound expression that consists of an operator
expression followed by zero or more operand sub-expressions. Both the operator and operands are contained within
parentheses:

> (quotient 10 2)
5

Scheme exclusively uses prefix notation. Operators are often symbols, such as + and *. Compound expressions can be
nested, and they may span more than one line:

> (+ (* 3 5) (- 10 6))
19
> (+ (* 3

(+ (* 2 4)
(+ 3 5)

)
)
(+ (- 10 7)
6

)
)

57

Evaluating a combination requires first examining the operator to see if it represents a special form1, which has its own
evaluation procedure. If the operator is not a special form, then the operator and operand expressions are evaluated in

1 Scheme also allows the definition of macros, which perform code transformations to a combination before evaluating it. We will revisit Scheme
macros later.

66

http://www.schemers.org/Documents/Standards/R5RS/
http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Clojure
https://repl.it/languages/scheme

Programming Language Principles and Paradigms, Release 0.4

some arbitrary order. The function that is the value of the operator is then applied to the arguments that are the values
of the operands.

The if expression in Scheme is an example of a special form. While it looks syntactically like a call expression, it has
a different evaluation procedure. The general form of an if expression is:

(if <predicate> <consequent> <alternative>)

To evaluate an if expression, the interpreter starts by evaluating the <predicate> part of the expression. If the
<predicate> evaluates to a true value, the interpreter then evaluates the <consequent> and returns its value. Other-
wise it evaluates the <alternative> and returns its value. The <alternative> may be elided.

Numerical values can be compared using familiar comparison operators, but prefix notation is used in this case as well:

> (>= 2 1)
#t

Truth values in Scheme, including the boolean values #t (for true) and #f (for false), can be combined with boolean
special forms, which have evaluation procedures as follows:

• (and <e1> ... <en>) The interpreter evaluates the expressions <e> one at a time, in left-to-right order. If
any <e> evaluates to a false value, the value of the and expression is that false value, and the rest of the <e>’s
are not evaluated. If all <e>’s evaluate to true values, the value of the and expression is the value of the last one.

• (or <e1> ... <en>) The interpreter evaluates the expressions <e> one at a time, in left-to-right order. If any
<e> evaluates to a true value, that value is returned as the value of the or expression, and the rest of the <e>’s
are not evaluated. If all <e>’s evaluate to false values, the value of the or expression is the value of the last one.

Truth values can also be manipulated with the not procedure:

• (not <e>) The value of a not expression is #t when the expression <e> evaluates to a false value, and #f
otherwise.

8.2 Definitions

Values can be named using the define special form:

> (define pi 3.14)
> (* pi 2)
6.28

New functions (usually called procedures in Scheme) can be defined using a second version of the define special
form. For example, to define squaring, we write:

(define (square x) (* x x))

The general form of a procedure definition is:

(define (<name> <formal parameters>) <body>)

The <name> is a symbol to be associated with the procedure definition in the environment. The <formal
parameters> are the names used within the body of the procedure to refer to the corresponding arguments of the pro-
cedure. The <body> is an expression that will yield the value of the procedure application when the formal parameters
are replaced by the actual arguments to which the procedure is applied. The <name> and the <formal parameters>
are grouped within parentheses, just as they would be in an actual call to the procedure being defined.

Having defined square, we can now use it in call expressions:

8.2. Definitions 67

Programming Language Principles and Paradigms, Release 0.4

> (square 21)
441

> (square (+ 2 5))
49

> (square (square 3))
81

User-defined functions can take multiple arguments and include special forms in their bodies:

> (define (average x y)
(/ (+ x y) 2))

> (average 1 3)
2
> (define (abs x)

(if (< x 0)
(- x)
x

)
)

> (abs -3)
3

Scheme supports local function definitions with static scope. We will defer discussion of this until we cover higher-
order functions.

Anonymous functions, also called lambda functions, are created using the lambda special form. A lambda is used to
create a procedure in the same way as define, except that no name is specified for the procedure:

(lambda (<formal-parameters>) <body>)

The resulting procedure is just as much a procedure as one that is created using define. The only difference is that it
has not been associated with any name in the environment. In fact, the following expressions are equivalent:

> (define (plus4 x) (+ x 4))
> (define plus4 (lambda (x) (+ x 4)))

Like any expression that has a procedure as its value, a lambda expression can be used as the operator in a call expression:

> ((lambda (x y z) (+ x y (square z))) 1 2 3)
12

We will examine lambda functions in more detail later.

8.2. Definitions 68

Programming Language Principles and Paradigms, Release 0.4

8.3 Compound Values

Pairs are built into the Scheme language. For historical reasons, pairs are created with the cons built-in function (and
thus, pairs are also known as cons cells), and the elements of a pair are accessed with car and cdr:

> (define x (cons 1 2))
> x
(1 . 2)
> (car x)
1
> (cdr x)
2

Figure 8.1 illustrates the pair structure created by (cons 1 2).

1 2

Figure 8.1: A pair consisting of the elements 1 and 2.

Recursive lists are also built into the language, using pairs. A special value denoted '() represents the empty list. A
recursive list value is rendered by placing its elements within parentheses, separated by spaces:

> (cons 1
(cons 2

(cons 3
(cons 4 '())

)
)

)
(1 2 3 4)
> (list 1 2 3 4)
(1 2 3 4)
> (define one-through-four (list 1 2 3 4))
> (car one-through-four)
1
> (cdr one-through-four)
(2 3 4)
> (car (cdr one-through-four))
2
> (cons 10 one-through-four)
(10 1 2 3 4)
> (cons 5 one-through-four)
(5 1 2 3 4)

Figure 8.2 demonstrates that the structure corresponding to the list whose text representation is (1 2 3 4) consists of
a sequence of pairs, terminated by the empty list (represented in the diagram as a box containing the symbol ∅).

A sequence of pairs that is terminated by something other than the empty list is called an improper list. Such a list is
rendered by the interpreter with a dot preceding the last element; the result of (cons 1 2) is an example, as shown
above, consisting of just a single pair in the sequence. The following demonstrates a more complex sequence:

8.3. Compound Values 69

Programming Language Principles and Paradigms, Release 0.4

1 2 3 4 ∅

Figure 8.2: A list containing the elements 1, 2, 3, and 4.

> (cons 1
(cons 2

(cons 3 4)
)

)
(1 2 3 . 4)

Figure 8.3 demonstrates the pair structure corresponding to the improper list above.

1 2 3 4

Figure 8.3: An improper list containing the elements 1, 2, and 3, and terminated by 4 rather than the empty list.

The illustrations in Figure 8.2 and Figure 8.3 demonstrate that pairs and other compound objects have reference seman-
tics – the cdr part of a pair stores a reference to the next pair in the sequence. The following code further demonstrates
these reference semantics with variables:

> (define x (cons 1 2))
> (define y x)
> (eqv? x y)
#t
> (set-car! y 7)
> x
(7 . 2)

Here, the definition (define y x) results in both x and y referring to the same pair object. The eqv? procedure when
applied to pairs returns true only when the two arguments refer to the same pair object (as opposed to equal?, which
compares pairs structurally). Furthermore, when we use the set-car! mutator to modify the first item of the pair
referenced by y, we can see that x references the same pair since it too shows the modification.

Whether an object is the empty list can be determined using the primitive null? predicate. Using it, we can define the
standard sequence operations for computing the length of a proper list and selecting elements:

> (define (list-length items)
(if (null? items)

0
(+ 1 (list-length (cdr items)))

)
)

> (define (getitem items n)
(if (= n 0)

(car items)
(getitem (cdr items) (- n 1))

)
)

(continues on next page)

8.3. Compound Values 70

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

> (define squares (list 1 4 9 16 25))
> (length squares)
5
> (getitem squares 3)
16

The built-in length and list-ref procedures provide the same functionality as list-length and getitem here.

8.4 Symbolic Data

All the compound data objects we have used so far were constructed ultimately from numbers. One of Scheme’s
strengths is working with arbitrary symbols as data.

In order to manipulate symbols we need a new element in our language: the ability to quote a data object. Suppose we
want to construct the list (a b). We can’t accomplish this with (list a b), because this expression constructs a list
of the values of a and b rather than the symbols themselves. In Scheme, we refer to the symbols a and b rather than
their values by preceding them with a single quotation mark:

> (define a 1)
> (define b 2)
> (list a b)
(1 2)
> (list 'a 'b)
(a b)
> (list 'a b)
(a 2)

In Scheme, any expression that is not evaluated is said to be quoted. This notion of quotation is derived from a classic
philosophical distinction between a thing, such as a dog, which runs around and barks, and the word “dog” that is a
linguistic construct for designating such things. When we use “dog” in quotation marks, we do not refer to some dog
in particular but instead to a word. In language, quotation allow us to talk about language itself, and so it is in Scheme:

> (list 'define 'list)
(define list)

Quotation also allows us to type in compound objects, using the conventional printed representation for lists. We have
already seen that '() denotes an empty list. Here are other examples:

> (car '(a b c))
a

> (cdr '(a b c))
(b c)

Quotation in Scheme is distinct from strings: the latter represent raw, unstructured data in character format, while the
former represents structured data:

> "(- 3)" ; a string containing the characters #\(#\- #\space #\3 #\)
"(- 3)"
> '(- 3) ; produces a list containing the symbol - and number 3
(- 3)
> (car '(- 3))

(continues on next page)

8.4. Symbolic Data 71

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

-
> (cdr '(- 3))
(3)
> (- 3) ; calls the - procedure on the number 3
-3

In the examples above, the string literal "(- 3)" evaluates to itself. The quoted expression '(- 3) evaluates to a list
containing the symbol - as its first element and the number 3 as its second. The last example evaluates the symbol - to
obtain the corresponding procedure, evaluates the number 3 to itself, and then calls the - procedure on the number 3,
producing -3. Put another way, data in a string literal remains as character data, neither evaluated nor parsed. A quoted
expression is parsed but not evaluated, producing a structured representation of the data. An unquoted expression is
both parsed and evaluated by the interpreter.

The full Scheme language contains additional features, such as mutation operations, vectors, and maps. However, the
subset we have introduced so far provides a rich functional programming language capable of implementing many of
the ideas we have discussed so far.

8.4. Symbolic Data 72

CHAPTER

NINE

FUNCTIONS

We first consider various schemes that are used for passing data to functions in the form of parameters and arguments.
We make a distinction between the parameters that appear in a function definition, which are also called formal parame-
ters, and the actual values that are passed to the function when it is called. The latter are often called actual parameters,
but we will use the term argument to refer to these values and the shorthand parameter for formal parameters.

9.1 Keyword Arguments

Some languages allow, or even require, parameter names to be provided when calling a function. This strategy is called
named parameters or keyword arguments.

Keyword arguments generally allow arguments to be provided in a different order than the parameter list of a function.
In Python, for example, a keyword argument can be used for any parameter. Consider the following code:

def foo(x, y):
print(x, y)

Calling foo() without keyword arguments passes the first argument as the first parameter, and the second argument as
the second parameter:

>>> foo(1, 2)
1 2

However, the arguments can be reordered using the parameter names:

>>> foo(y = 1, x = 2)
2 1

Python also provides mechanisms for defining parameters to be positional-only or keyword-only, but we will not discuss
these mechanisms here.

A handful of languages require names to be provided for all or most arguments by default, as well as requiring that they
be given in the same order as the parameters. The following is an example in Swift 3:

func greet(name: String, withGreeting: String) {
print(withGreeting + " " + name)

}

greet(name: "world", withGreeting: "hello")

Calling greet() with the arguments in reverse order is erroneous.

73

https://peps.python.org/pep-0570/
https://peps.python.org/pep-3102/

Programming Language Principles and Paradigms, Release 0.4

Swift is also rare in that it allows different argument and parameter names to be specified for a parameter. This means
that the name provided for an argument when calling a function can differ from the internal name of the parameter used
in the body of the function.

9.2 Default Arguments

In some languages, a function declaration or definition may be provided with a default argument value that allows
the function to be called without that argument. This can be an alternative to overloading, where separate function
definitions are written to handle the cases where an argument is present or missing.

The following is an example in Python:

def power(base, exponent=2):
return base ** exponent

The power() function can be called with a single argument, in which case the default argument 2 is used to compute
the square of the number. It can also be called with two arguments to compute an arbitrary power:

>>> power(3)
9
>>> power(3, 4)
81

Parameters that have default arguments generally must appear at the end of the parameter list. Languages differ on
when and in which environment they evaluate the default argument. The most common strategy is to evaluate a default
argument every time a function is called, but to do so in the definition environment (static scope). Python is rare in
that it only evaluates default arguments once, when the function definition statement is executed. This means that if the
value of the parameter is modified in the function, subsequent calls to the same function could have different default
values for the same parameter. For example:

def test(x=[]):
x.append(1)
print(x)

test()
test()

This will print:

[1]
[1, 1]

C and C++ have numerous rules concerning default arguments, necessitated by the fact that an entity can be declared
multiple times. Default arguments can be provided in both stand-alone declarations as well as definitions. However,
it is illegal for multiple visible declarations of the same entity to provide a default argument for the same parameter,
even if the provided value is the same. The set of default arguments is the union of all visible declarations within the
same scope, and a declaration may only introduce a default argument for a parameter if all following parameters have
been supplied with default arguments by the previous and current declarations. Names used in a default argument are
resolved at the point of declaration, but the argument expressions are evaluated when the function is called.

The following is a legal example of multiple declarations in C++:

9.2. Default Arguments 74

Programming Language Principles and Paradigms, Release 0.4

int foo(int x, int y = 4);
int foo(int x = 3, int y) {
return x + y;

}

C++ allows default arguments for template parameters in addition to function parameters, with similar validity rules.

9.3 Variadic Functions

A language may provide a mechanism for a function to be called with a variable number of arguments. This feature is
often referred to as varargs, and functions that make use of it are variadic. The mechanism may provide type safety, or
it may permit unsafe uses that result in erroneous or undefined behavior. A variadic parameter generally must appear
at the end of a parameter list, and it matches arguments that remain once the non-variadic parameters are matched.
Usually, only a single variadic parameter is allowed.

In languages that provide safe variadic functions, a common mechanism for doing so is to automatically package
variable arguments into a container, such as an array or tuple. For example, the following Python function computes
the product of its arguments:

def product(*args):
result = 1
for i in args:

result *= i
return result

The * in front of a parameter name indicates a variadic parameter, and the variable arguments are passed as a tuple
bound to that name. The function above iterates over the elements of the tuple, updating the total product. In order to
call product(), 0 or more arguments must be provided:

>>> product()
1
>>> product(1, 2, 3)
6

Python also provides variadic keyword arguments, which are packaged into a dictionary. Placing ** in front of a
parameter specifies that it is a variadic keyword parameter, and such a parameter must be the last one. As an example,
the following function has both a non-keyword variadic parameter and a variadic keyword parameter, printing out the
tuple corresponding to the former and the dictionary for the latter:

def print_args(*args, **kwargs):
print(args)
print(kwargs)

>>> print_args(3, 4, x = 5, y = 6)
(3, 4)
{'x': 5, 'y': 6}

Finally, Python allows a sequence or dictionary to be “unpacked” using the * or ** operator, allowing the unpacked val-
ues to be used where a list of values is required. For example, the following unpacks a list to make a call to product():

>>> product(*[1, 2, 3])
6

9.3. Variadic Functions 75

Programming Language Principles and Paradigms, Release 0.4

Scheme also supports variadic arguments. A procedure can be defined to take variadic arguments by using an improper
list as the parameter list, terminated by a symbol rather than an empty list. The variadic parameter binds to any number
of arguments, packaged into a (proper) list:

> (define (func . args)
args

)
> (func)
()
> (func 1 2 3)
(1 2 3)

The procedure func takes in any number of arguments and returns the list containing those arguments. It thus behaves
as the built-in list procedure. We can also define a procedure that takes in both required and variadic arguments, as
in the following definition of average:

> (define (average x . nums)
(/ (apply + x nums)
(+ 1 (length nums))

)
)

> (average 1)
1
> (average 1 3)
2
> (average 1 3 5 7)
4

The procedure takes in one or more arguments, with the first bound to the parameter x and the rest encapsulated in a
list bound to the variadic nums parameter. We can forward variadic arguments using apply, which takes a procedure,
any number of regular arguments, and lastly, a list containing the remaining arguments. For example, (apply + 1 2
'(3 4)) is equivalent to the call (+ 1 2 3 4). In the first example using average above, nums is bound to an empty
list in the call (average 1), and (apply + x nums) is equivalent to (apply + 1 '()), which itself is equivalent
to (+ 1). In the third example, nums is bound to a list (3 5 7), so (apply + x nums) is equivalent to (apply +
1 '(3 5 7)), which is in turn equivalent to (+ 1 3 5 7).

In both Python and Scheme, a variadic parameter can match arguments with any type because the two languages are
dynamically typed. In statically typed languages, however, variadic parameters are usually restricted to a single type,
though that type may be polymorphic. For example, the following is a variadic method in Java:

public static void print_all(String... args) {
for (String s : args) {
System.out.println(s);

}
}

The arguments to print_all() must be Strings, and they are packaged into a String array. Java also allows a
single String array to be passed in as an argument:

print_all("hello", "world");
print_all(new String[] { "good", "bye" });

C and C++ also have a mechanism for variadic arguments, but it poses significant safety issues. In particular, it provides
no information about the number of arguments and their types to the function being called. The following is an example
of a function that returns the sum of its arguments:

9.3. Variadic Functions 76

Programming Language Principles and Paradigms, Release 0.4

#include <stdarg.h>

int sum(int count, ...) {
va_list args;
int total = 0;
int i;
va_start(args, count);
for (i = 0; i < count; i++) {
total += va_arg(args, int);

}
va_end(args);
return total;

}

In this function, the first argument is assumed to be the number of remaining arguments, and the latter are assumed to
have type int. Undefined behavior results if either of these conditions is violated. Another strategy is to use a format
string to determine the number and types of arguments, as used in printf() and similar functions. The lack of safety
of variadic arguments enables vulnerabilities such as format string attacks.

C++11 provides variadic templates that are type safe. We will discuss them later in the text.

9.4 Parameter Passing

Another area in which languages differ is in the semantics and mechanism used in order to communicate arguments
between a function and its caller. A function parameter may be unidirectional (used for only passing input to a function
or only passing output from a function to its caller), or it may be bidirectional. These cases are referred to as input,
output, and input/output parameters. A language need not support all three parameter categories.

Different parameter passing techniques, or call modes, are used by languages. These affect the semantics of arguments
and parameters as well as what parameter categories are supported. The following are specific call modes used by
different languages:

• Call by value. A parameter represents a new variable in the frame of a function invocation. The argument value
is copied into the storage associated with the new variable. Call-by-value parameters only provide input to a
function, as in the following example in C++:

void foo(int x) {
x++;
cout << x << endl;

}

int main() {
int y = 3;
foo(y); // prints 4
cout << y << endl; // prints 3

}

Even though foo() modifies the input value, the modified value is not propagated back to the caller.

• Call by reference. An l-value must be passed as the argument, as the parameter aliases the object that is passed
in. Any modifications to the parameter are reflected in the argument object. Thus, call by reference parameters
provide both input and output. In C++, reference parameters provide call by reference, and they may be restricted
to just input by declaring them const2. The following C++ example uses call by reference to swap the values of

2 The const qualification further allows r-values to be passed as an argument, since C++ allows const l-value references to bind to r-values.

9.4. Parameter Passing 77

https://en.wikipedia.org/wiki/Uncontrolled_format_string

Programming Language Principles and Paradigms, Release 0.4

two objects:

void swap(int &x, int &y) {
int tmp = x;
x = y;
y = tmp;

}

int main() {
int x = 3, y = 4;
swap(x, y);
cout << x << " " << y << endl; // prints 4 3

}

Call by reference is sometimes used to refer to passing objects indirectly using pointers. The following C/C++
function swaps object values using pointers:

void swap(int *x, int *y) {
int tmp = *x;
*x = *y;
*y = tmp;

}

int main() {
int x = 3, y = 4;
swap(&x, &y);
printf("%d %d\n", x, y); // prints 4 3

}

Technically speaking, however, the arguments and parameters are separate pointer objects that are passed by
value. That being said, the effect emulates call by reference, enabling both input and output to be achieved
through a parameter.

• Call by result. In this mode, a parameter represents a new variable that is not initialized with a value from
the caller. Instead, the caller specifies an l-value for the argument, and when the function call terminates, the
final value of the parameter is copied to the l-value. Thus, call by result only provides output parameters. The
following is an example, using C-like syntax with call by result:

void foo(result int x) {
x = 3;
x++; // x is now 4

}

int y = 5;
foo(y); // y is now 4
print(y); // prints 4

• Call by value-result. This is the combination of call by value and call by result. The argument value is copied
into a new variable corresponding to the parameter, and then upon return from the function, the value of the
parameter is copied back to the l-value provided by the caller. This differs from call by reference in that copies
are made upon entry and exit to the function. This can be illustrated by passing the same l-value to multiple
parameters, as in the following example using C-like syntax with call by value-result:

int foo(value-result int x, value-result int y) {
x++;

(continues on next page)

9.4. Parameter Passing 78

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

return x - y;
}

int z = 3;
print(foo(z, z)); // prints 1
print(z); // prints 3 or 4, depending on the semantics

In this code, x and y are new variables that are initialized to the value of z, i.e. 3. The increment of x does not
affect y, since they are separate variables, so the call to foo() returns 1. Thus, 1 is printed. (The final value of z
depends on the semantics of the language as to whether it is copied from x or y.) If call by reference were used
instead, then x and y would alias the same object, and the call to foo() would return 0.

• Call by name. In this mode, a full expression can be provided as an argument, but it is not evaluated at the time
a function is called. Instead, the parameter name is replaced by the expression where the name occurs in the
function, and the expression is evaluated at the time that it is encountered in the body. This is a form of lazy
evaluation, where a value is not computed until it is needed. The following is an example using C-like syntax
with call by name:

void foo(name int a, name int b) {
print(b); // becomes print(++y)
print(b); // becomes print(++y)

}

int x = -1, y = 3;
foo(++x, ++y); // prints 4, then 4 or 5 depending on the exact

// language semantics; y is now 4 or 5
print(x); // prints -1 -- x is unchanged

In this example, the argument expression ++x is never evaluated since the corresponding call-by-name parameter
a is never used. On the other hand, the expression ++y is computed since the corresponding parameter b does
get used. Depending on the language semantics, the expression may only be evaluated once and the value cached
for subsequent use, or it may be evaluated each time the parameter is used.

There is a subtle issue that arises in call by name. Consider the following code that uses C-like syntax with call
by name:

void bar(name int x) {
int y = 3;
print(x + y);

}

int y = 1;
bar(y + 1);

If we replace the occurrence of the parameter x in bar() with the argument expression, we get y + 1 + y as
the argument to print(). If this is evaluated in the environment of bar(), the result is 7. This is undesirable,
since it means that the implementation detail of a local declaration of y changes the behavior of the function.

Instead, the argument expression should be evaluated in the environment of caller. This requires passing both the
argument and its environment to the function invocation. Languages that use call by name often use a compiler-
generated local function, called a thunk, to encapsulate the argument expression and its environment. This thunk
is then passed to the invoked function, and it is the thunk that is called when the parameter is encountered.

In some languages, the expression corresponding to a call-by-name parameter is only evaluated the first time the
parameter is referenced, caching the result. The cached result is then used in each subsequent occurrence of the

9.4. Parameter Passing 79

Programming Language Principles and Paradigms, Release 0.4

parameter.

Call by value is the call mode used by most modern languages, including C, C++ (for non-reference parameters), Java,
Scheme, and Python. Programmers often mistakenly believe the latter three languages use call by reference, but in
reality, they combine call by value with reference semantics. This combination is sometimes called call by object
reference. The following example illustrates that Python is call by value:

def swap(x, y):
tmp = x
x = y
y = tmp

>>> x, y = 1, 2
>>> swap(x, y)
>>> x, y
(1, 2)

The erroneous swap() function merely changes the values of the local variables, which changes the objects they refer
to, without affecting the variables used as arguments. This demonstrates that the storage for the global x and y is
distinct from that of the parameters, so Python does not use call by reference. In fact, Python cannot even emulate call
by reference in the manner that C and C++ pointers do.

9.5 Evaluation of Function Calls

We proceed to summarize to evaluation process of a function call.

The first step is to determine the non-local environment of a call to a nested function. In languages with nested functions
and static scope, a reference to the non-local environment is stored in the associated function object when the nested-
function definition itself is executed. Under dynamic scope with deep binding, the non-local environment is determined
when the function is referenced by name. Finally, in dynamic scope with shallow binding, the non-local environment
is the environment that is active when the function is called.

The next step is to pass the arguments to the function, using a newly created activation record for the function call. The
arguments are evaluated in the existing environment and passed to the callee as follows:

1. Call by value and call by value-result: the argument is evaluated to obtain its r-value. The r-value is copied
into the storage for the corresponding parameter in the new activation record.

2. Call by reference: the argument is evaluated to obtain its l-value. The corresponding parameter is bound to the
object associated with the l-value.

3. Call by result: the argument is evaluated to obtain its l-value. Storage is allocated but not initialized within the
new activation record.

4. Call by name: the argument expression is packaged into a thunk with the current environment. The parameter
is bound to a reference to the thunk.

Once the parameters have been passed, execution of the caller pauses, and the body of the callee is executed in an
environment consisting of the newly created activation record along with the callee’s non-local environment. For call
by name, an occurrence of a call-by-name parameter invokes the corresponding thunk either the first time the parameter
is named or every time, according to the semantics of the language.

When the called function returns, its return value, if there is one, is placed in a designated storage location, generally
in the activation record of the caller. For a call-by-result or call-by-value-result parameter, the current r-value of the
parameter is copied into the object associated with the l-value of the corresponding function-call argument. The ac-
tivation record for the callee is then destroyed, and execution resumes in the caller at the point following the function
call. The evaluation result of the function call itself is the return value of the function.

9.5. Evaluation of Function Calls 80

CHAPTER

TEN

RECURSION

Recursion is a mechanism for repetition that makes use of functions and function application. It involves a function
calling itself directly or indirectly, usually with arguments that are in some sense “smaller” than the previous arguments.
A recursive computation terminates when it reaches a base case, an input where the result can be computed directly
without making any recursive calls.

It is sufficient for a language to provide recursion and conditionals in order for it to be Turing complete.

10.1 Activation Records

On a machine, recursion works due to the fact that each invocation of a function has its own activation record that maps
its local variables to values. Consider the following recursive definition of factorial:

def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

Calling factorial(4) results in five invocations of factorial(), with arguments from 4 down to 0. Each has its
own activation record with its own binding for the parameter n:

factorial(4): n --> 4
factorial(3): n --> 3
factorial(2): n --> 2
factorial(1): n --> 1
factorial(0): n --> 0

Figure 10.1 is an illustration of the set of activation records as produced by Python Tutor.

When n is looked up while executing the body of factorial(), each invocation obtains its own value of n without
being affected by the other activation records.

An activation record requires more than just storage for parameters and local variables in order for function invocation
to work. Temporary values also need to be stored somewhere, and since each invocation needs its own storage for
temporaries, they are generally also placed in the activation record. An invocation also needs to know where to store
its return value, usually in temporary storage in the frame of the caller. Finally, a function needs to know how to return
execution to its caller. Details are beyond the scope of this text, but included in this information is the instruction
address that follows the function call in the caller and the address of the caller’s activation record.

The set of temporary objects can be conservatively determined statically, so the size of an activation record, as well as
the placement of objects within it, can be determined at compile time. For factorial() above, temporary storage is
required for n - 1 as well as the result of the recursive call to factorial(). The location of the latter in the caller is

81

http://www.pythontutor.com/

Programming Language Principles and Paradigms, Release 0.4

Objects

function

factorial(n)

int

4

int

3

int

2

int

1

int

0

How do I use this?

Nobody is currently asking for help using the "Get live help!" button.

Frames

Global frame

factorial

factorial

n

factorial

n

factorial

n

factorial

n

factorial

n

Click the button above to create a permanent link to your visualization. To report a bug, paste the link along with a
brief error description in an email addressed to philip@pgbovine.net

To embed this visualization in your webpage, click the 'Generate embed code' button above and paste the resulting
HTML code into your webpage. Adjust the height and width parameters and change the link to https:// if needed.

Python Tutor (code on GitHub) supports seven languages (despite its name!):

1. Python 2.7 and 3.6 with limited module imports and no file I/O. The following modules may be imported: bisect,
collections, copy, datetime, functools, hashlib, heapq, itertools, json, math, operator, random, re, string, time,
typing, io/StringIO. Backend source code.

2. Java using Oracle's Java 8. The original Java visualizer was created by David Pritchard and Will Gwozdz. It
supports StdIn, StdOut, most other stdlib libraries, Stack, Queue, and ST. (To access Java's builtin Stack/Queue
classes, write import java.util.Stack; — note, import java.util.*; won't work.) Backend source code.

3. JavaScript running in Node.js v6.0.0 with limited support for ES6. Backend source code.

4. TypeScript 1.4.1 running in Node.js v6.0.0. Backend source code.

5. Ruby 2 using MRI 2.2.2. Backend source code.

6. C using gcc 4.8, C11, and Valgrind Memcheck. Backend source code.

7. C++ using gcc 4.8, C++11, and Valgrind Memcheck. Backend source code.

Privacy Policy: By using Online Python Tutor, your visualized code, options, user interactions, text chats, and IP
address are logged on our server and may be analyzed for research purposes. Nearly all Web services collect this
basic information from users. However, the Online Python Tutor website (pythontutor.com) does not collect any
personal information or session state from users, nor does it issue any cookies.

Use this website at your own risk. The developers of Python Tutor are not responsible for the chat messages or
behaviors of any of the users on this website. We are also not responsible for any damages caused by using this
website.

Copyright © Philip Guo. All rights reserved.

Python 3.6

1 def factorial(n):
2 if n == 0:
3 return 1
4 return n * factorial(n - 1)
5
6 factorial(4)

Edit code | Live programming
 line that has just executed
 next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.

 Step 15 of 22

Visualized using Python Tutor by Philip Guo (@pgbovine)

Help us improve this tool by clicking below whenever you learn something:

Figure 10.1: Activation records used to compute factorial(4).

10.1. Activation Records 82

Programming Language Principles and Paradigms, Release 0.4

used by a recursive call to store its return value. Depending on the implementation, the invocation of factorial(0)
may still have space for these temporary objects in its activation record even though they will not be used.

10.2 Tail Recursion

A recursive computation uses a separate activation record for each call to a function. The amount of space required to
store these records is proportional to the number of active function calls. In factorial(n) above, when the computa-
tion reaches factorial(0), all n + 1 invocations are active at the same time, requiring space in O(n). Contrast this
with the following iterative implementation that uses constant space:

def factorial_iter(n):
result = 1
while n > 0:

result *= n
n -= 1

return result

The space requirements of the recursive version of factorial(), however, is not intrinsic to the use of recursion but
is a result of how the function is written. An invocation of factorial(k) cannot complete until the recursive call
to factorial(k - 1) does, since it has to multiply the result by k. The fact that the invocation has work that needs
to be done after the recursive call requires its activation record to be retained during the recursive call, leading to the
linear space requirement.

Consider an alternative recursive computation of factorial:

def factorial_tail(n, partial_result = 1):
if n == 0:

return partial_result
return factorial_tail(n - 1, n * partial_result)

Observe that the factorial_tail() function does not do any work after the completion of its recursive call. This
means that it no longer needs the storage for parameters, local variables, or temporary objects when the recursive call is
made. Furthermore, since factorial(n, k) directly returns the result of the recursive call factorial(n - 1, n
* k), the latter can store its return value in the location meant for the return value of factorial(n, k) in the caller
of factorial(n, k), and it can return execution directly to that caller. Thus, an optimizing implementation can
reuse the space for the activation record of factorial_tail(n, k) for factorial_tail(n - 1, n * k) since
the activation record of the former is no longer required.

This process can be generalized to any function call, not just recursive calls. A function call is a tail call if its caller
directly returns the value of the call without performing any additional computation. A function is tail recursive if all
of its recursive calls are tail calls. Thus, factorial_tail() is tail recursive.

A tail-recursive computation uses only a constant number of activation records, so its space usage matches that of
an equivalent iterative computation. In fact, many functional languages do not provide constructs for iteration, since
they can be expressed equivalently using tail recursion. These languages often require that implementations perform
tail-call optimization, reusing the space for activation records where possible.

Since a tail call requires that no computation be performed after it returns, calls that syntactically appear to be tail calls
may not be when implicit computation may occur at the end of a function. A specific example of this is scope-based
resource management, as in the example below:

int sum(vector<int> values, int index, int partial_result = 0) {
if (values.size() == index) {
return 0;

(continues on next page)

10.2. Tail Recursion 83

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

}
return sum(values, index + 1, partial_result + values[index])

}

While it appears that this code does not do computation after the recursive call, the local vector<int> object has a
destructor that must run after the recursive call completes. Thus, the recursive call to sum() is not a tail call, and this
computation is not tail recursive.

Another situation that prevents tail-call optimization is when a function contains a function definition within it, in
languages that use static scope and support the full power of higher-order functions. The nested function requires
access to its definition environment, so that environment must be retained if the nested function can be used after the
invocation of its enclosing function completes or within a tail call.

10.3 Iteration and Recursion

Iteration and recursion are equivalent in power and are just different tools for expressing the same algorithms. In fact,
an iterative implementation can be converted to a tail-recursive one in a fairly mechanical manner, with local variables
becoming function parameters. For instance, consider the Fibonacci sequence, which is defined via the following
recurrence:

𝐹 (𝑛) =

{︃
𝑛 if 𝑛 = 0 or 𝑛 = 1

𝐹 (𝑛− 1) + 𝐹 (𝑛− 2) otherwise

The following is an iterative implementation that uses a “bottom-up” approach to compute an element of the sequence:

def fib(n):
if n == 0: return 0
prev, crnt = 0, 1
for i in range(1, n):

prev, crnt = crnt, prev + crnt
return crnt

Unlike a naive recursive implementation that takes time exponential in 𝑛 and linear space, this iterative version takes lin-
ear time and constant space. We can translate the iterative implementation to a recursive one by introducing additional
function parameters to replace each of the local variables, resulting in the following:

def fib(n, prev=0, crnt=1, i=1):
if n == 0: return 0
if i == n: return crnt
return fib(n, crnt, prev + crnt, i + 1)

We use default arguments to provide the variables their initial values. The termination conditions are the same as the
iterative version: when n == 0 for the base case, and when i == n for the recursive case. And the variable updates
are the same, just that the new values are passed to a recursive call rather than modifying the existing variables. The
resulting function is tail-recursive, and with tail-call optimization, it is exactly equivalent to the iterative version.

A recursive implementation can also be translated to an iterative one, though the equivalent iterative version may require
an explicit data structure to replace the implicit storage provided by the call stack. As an example, the following is a
recursive function that computes the sum of the elements contained in a binary tree:

def deep_sum(tree):
if not tree: return 0

(continues on next page)

10.3. Iteration and Recursion 84

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

return (tree.datum
+ deep_sum(tree.left)
+ deep_sum(tree.right))

This is a tree-recursive function, and it makes use of a call stack that is linear with respect to the height of the tree. An
equivalent iterative implementation needs to provide this storage manually:

def deep_sum(tree):
sum = 0
stack = [tree]
while stack:

if tree := stack.pop():
sum += tree.datum
stack.append(tree.left)
stack.append(tree.right)

return sum

The initial value for sum is the same as the return value for the base case in the recursive version. In both imple-
mentations, if the current tree is non-empty, its datum is added to the sum, and the computation is repeated on each
child.

Since either iteration or recursion can express the same algorithm, if both are available in a programming system, it is
up to the programmer which one to use. A programmer may decide that one tool is a more natural fit for a particular
algorithm, or they may consider which one their system can optimize better. Ideally, the programmer is adept at both
tools and makes the decision based on which is more appropriate for the use case rather than which one they are more
comfortable utilizing.

10.3. Iteration and Recursion 85

CHAPTER

ELEVEN

HIGHER-ORDER FUNCTIONS

Recall that a first-class entity is one that supports the operations that can be done on other entities in a language,
including being passed as a parameter, returned from a function, and created dynamically. In a language in which
functions are first class, it is possible to write higher-order functions that take in another function as a parameter or
return a function. Other languages may also support higher-order functions, even if functions are not first-class entities
that can be created at runtime.

11.1 Function Objects

In some languages, it is possible to define objects that aren’t functions themselves but provide the same interface as
a function. These are known as function objects or functors. In general, languages enable functors to be written by
allowing the function-call operator to be overloaded. Consider the following example in C++:

class Counter {
public:
Counter : count(0) {}

int operator()() {
return count++;

}

private:
int count;

};

The Counter class implements a functor that returns how many times it has been called. Multiple Counter objects
can exist simultaneously, each with their own count:

Counter counter1, counter2;
cout << counter1() << endl; // prints 0
cout << counter1() << endl; // prints 1
cout << counter1() << endl; // prints 2
cout << counter2() << endl; // prints 0
cout << counter2() << endl; // prints 1
cout << counter1() << endl; // prints 3

Functors allow multiple instances of a function-like object to exist, each with their own state that persists over the
lifetime of the functor. This is in contrast to functions, where automatic objects do not persist past a single invocation,
and static objects persist over the entire program execution.

Python also allows functors to be written by defining the special __call__ method:

86

Programming Language Principles and Paradigms, Release 0.4

class Counter:
def __init__(self):

self.count = 0

def __call__(self):
self.count += 1
return self.count - 1

In general, additional parameters can be specified when overloading the function-call operator, emulating functions
that can take in those arguments.

Some languages do not allow the function-call operator itself to be overloaded but specify conventions that allow
functor-like objects to be defined and used. For example, the following is an implementation of Counter in Java using
the Supplier<T> interface, which specifies a zero-argument method that produces a T:

class Counter implements Supplier<Integer> {
public Integer get() {
return count++;

}

private int count = 0;
}

This functor-like object is then invoked by explicitly calling the get() method:

Supplier<Integer> counter1 = new Counter();
Supplier<Integer> counter2 = new Counter();
System.out.println(counter1.get()); // prints 0
System.out.println(counter1.get()); // prints 1
System.out.println(counter1.get()); // prints 2
System.out.println(counter2.get()); // prints 0
System.out.println(counter2.get()); // prints 1
System.out.println(counter1.get()); // prints 3

As another example, the Predicate interface in Java is implemented by functor-like objects that take in an argument
and return a boolean value:

interface Predicate<T> {
boolean test(T t);
...

}

class GreaterThan implements Predicate<Integer> {
public GreaterThan(int threshold) {
this.threshold = threshold;

}

public boolean test(Integer i) {
return i > threshold;

}

private int threshold;
}

Code that uses these functor-like objects calls the test() method rather than calling the object directly:

11.1. Function Objects 87

Programming Language Principles and Paradigms, Release 0.4

GreaterThan gt3 = new GreaterThan(3);
System.out.println(gt3.test(2)); // prints out false
System.out.println(gt3.test(20)); // prints out true

Separate interfaces are provided for common patterns in the java.util.function library package.

11.2 Functions as Parameters

A higher-order function may take another function as a parameter. We first examine languages that only have top-level
functions and allow a pointer or reference to a function to be passed as an argument. We then examine how passing a
function as an argument can affect the environment in which the function’s code is executed.

11.2.1 Function Pointers

In some languages, functions can be passed as parameters or return values but cannot be created within the context
of another function. In these languages, all functions are defined at the top level, and only a pointer or reference to a
function may be used as a value. Consider the following example in C, a language that provides function pointers:

void apply(int *array, size_t size, int (*func)(int)) {
for (; size > 0; --size, ++array) {
*array = func(*array);

}
}

int add_one(int x) {
return x + 1;

}

int main() {
int A[5] = { 1, 2, 3, 4, 5 };
apply(A, 5, add_one);
printf("%d, %d, %d, %d, %d\n", A[0], A[1], A[2], A[3], A[4]);
return 0;

}

The apply() function takes in an array, its size, and a pointer to a function that takes in an int and returns an int. It
applies the function to each element in the array, replacing the original value with the result. The add_one() function
is passed as an argument to apply() (C automatically converts a function to a function pointer), and the result is that
each element in A has been incremented.

11.2.2 Binding Policy

In the code above, there are three environments associated with the add_one() function: its definition environment, the
environment where it was referenced (in main()), and the environment where it was called (in apply()). Depending
on the semantics of the language, any of these three environments may be components of the environment in which the
body of add_one() is executed.

Recall that in static scope, the code in a function has access to the names in its definition environment, whereas in
dynamic scope, it has access to the names in the environment of its use. Considering dynamic scope, is the non-local
environment of a function the one where the function was referenced or the one where it was called? The following is
an example where this distinction is relevant:

11.2. Functions as Parameters 88

Programming Language Principles and Paradigms, Release 0.4

int foo(int (*bar)()) {
int x = 3;
return bar();

}

int baz() {
return x;

}

int main() {
int x = 4;
print(foo(baz));

}

In dynamic scope, a function has access to the environment of its use. In the example above, however, the result is
different depending on if the use environment of baz() is where the function was referenced or where it was called.
In the former case, the non-local environment of baz() is the environment of main(), and the x in the body of baz()
would refer to the one defined in main(). This is known as deep binding. In the latter case, the non-local environment
of baz() is the environment of foo(), and x in baz() would refer to the one defined in foo(). This is called shallow
binding. Both approaches are valid, and the binding policy of a language determines which one is used.

Binding policy can also make a difference when static scope is used in the case of functions defined locally inside of a
recursive function. However, deep binding is universally used in languages with static scope, so that the environment
established at the time of a function’s definition is the one the function has access to.

11.3 Nested Functions

A key feature of functional programming is the ability to define a function from within another function, allowing the
dynamic creation of a function. In languages with static scoping, such a nested function has access to its definition
environment, and the combination of a function and its definition environment is called a closure. Variables used in the
nested function but defined in the enclosing environment are said to be captured by the closure. If a nested function
is returned or otherwise leaks from the enclosing function, the environment of the enclosing function generally must
persist after the function returns, since bindings within it may be accessed by the nested function.

As an example, consider the following higher-order function in Python that returns a nested function:

def make_greater_than(threshold):
def greater_than(x):

return x > threshold

return greater_than

The make_greater_than() function takes in a threshold value and constructs a nested function that determines
if its input is greater than the threshold value. The threshold variable is located in the activation record of
make_greater_than() but is captured by greater_than(). Since the latter is returned, the activation record must
persist so that invocations of greater_than() can access the binding for threshold.

Observe that each time make_greater_than() is called, a different instance of greater_than() is created with its
own enclosing environment. Thus, different invocations of make_greater_than() result in different functions:

>>> gt3 = make_greater_than(3)
>>> gt30 = make_greater_than(30)
>>> gt3(2)

(continues on next page)

11.3. Nested Functions 89

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

False
>>> gt3(20)
True
>>> gt30(20)
False
>>> gt30(200)
True

Figure 11.1 from Python Tutor shows the state when gt3(2) is called.

Objects

function

make_greater_than(threshold)

int

3

function

greater_than(x) [parent=f1]

int

30

function

greater_than(x) [parent=f2]

int

2

bool

False

How do I use this?

Nobody is currently asking for help using the "Get live help!" button.

Frames

Global frame

make_greater_than

gt3

gt30

f1: make_greater_than

threshold

greater_than

Return
 value

f2: make_greater_than

threshold

greater_than

Return
 value

greater_than [parent=f1]

x

Return
 value

Click the button above to create a permanent link to your visualization. To report a bug, paste the link along with a
brief error description in an email addressed to philip@pgbovine.net

To embed this visualization in your webpage, click the 'Generate embed code' button above and paste the resulting
HTML code into your webpage. Adjust the height and width parameters and change the link to https:// if needed.

Python Tutor (code on GitHub) supports seven languages (despite its name!):

1. Python 2.7 and 3.6 with limited module imports and no file I/O. The following modules may be imported: bisect,
collections, copy, datetime, functools, hashlib, heapq, itertools, json, math, operator, random, re, string, time,
typing, io/StringIO. Backend source code.

2. Java using Oracle's Java 8. The original Java visualizer was created by David Pritchard and Will Gwozdz. It
supports StdIn, StdOut, most other stdlib libraries, Stack, Queue, and ST. (To access Java's builtin Stack/Queue
classes, write import java.util.Stack; — note, import java.util.*; won't work.) Backend source code.

3. JavaScript running in Node.js v6.0.0 with limited support for ES6. Backend source code.

4. TypeScript 1.4.1 running in Node.js v6.0.0. Backend source code.

5. Ruby 2 using MRI 2.2.2. Backend source code.

6. C using gcc 4.8, C11, and Valgrind Memcheck. Backend source code.

7. C++ using gcc 4.8, C++11, and Valgrind Memcheck. Backend source code.

Privacy Policy: By using Online Python Tutor, your visualized code, options, user interactions, text chats, and IP
address are logged on our server and may be analyzed for research purposes. Nearly all Web services collect this
basic information from users. However, the Online Python Tutor website (pythontutor.com) does not collect any
personal information or session state from users, nor does it issue any cookies.

Use this website at your own risk. The developers of Python Tutor are not responsible for the chat messages or
behaviors of any of the users on this website. We are also not responsible for any damages caused by using this
website.

Copyright © Philip Guo. All rights reserved.

Python 3.6

1 def make_greater_than(threshold):
2 def greater_than(x):
3 return x > threshold
4 return greater_than
5
6 gt3 = make_greater_than(3)
7 gt30 = make_greater_than(30)
8 gt3(2)

Edit code | Live programming
 line that has just executed
 next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.

 Step 15 of 15

Visualized using Python Tutor by Philip Guo (@pgbovine)

Help us improve this tool by clicking below whenever you learn something:

Figure 11.1: Environment for multiple instances of a nested function.

The parent frame of the invocation is that in which threshold is bound to 3, so x > threshold evaluates to false.

11.3. Nested Functions 90

http://www.pythontutor.com/

Programming Language Principles and Paradigms, Release 0.4

Languages that are not purely functional may allow modification of a captured variable. For example, the following
defines a data abstraction for a bank account using nested functions:

def make_account(balance):
def deposit(amount):

nonlocal balance
balance += amount
return balance

def withdraw(amount):
nonlocal balance
if 0 <= amount <= balance:

balance -= amount
return amount

else:
return 0

return deposit, withdraw

The nonlocal statements are required in Python, since it assumes that assignments are to local variables by default.
We can then use the created functions as follows:

>>> deposit, withdraw = make_account(100)
>>> withdraw(10)
10
>>> deposit(0)
90
>>> withdraw(20)
20
>>> deposit(0)
70
>>> deposit(10)
80
>>> withdraw(100)
0
>>> deposit(0)
80

We will return to data abstraction using functions later.

11.3.1 Decorators

A common pattern in Python is to transform a function (or class) by applying a higher-order function to it. Such a
higher-order function is called a decorator, and Python has specific syntax for decorating functions:

@<decorator>
def <name>(<parameters>):

<body>

This is largely equivalent to:

def <name>(<parameters>):
<body>

(continues on next page)

11.3. Nested Functions 91

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

<name> = <decorator>(<name>)

The decorated function’s definition is executed normally, and then the decorator is called on the function. The result
of this invocation is then bound to the name of the function.

As an example, suppose we wanted to trace when a function is called by printing out the name of the function as well
as its arguments. We could define a higher-order function that takes in a function and returns a new nested function
that first prints out the name of the original function and its arguments and then calls it:

def trace(fn):
def tracer(*args):

args_string = ', '.join(repr(arg) for arg in args)
print(f'{fn.__name__}({args_string})')
return fn(*args)

return tracer

Here, we make use of variadic arguments to pass any number of arguments to the original function. (For simplicity,
we ignore keyword arguments.) We can then use decorator syntax to apply this to a function:

@trace
def factorial(n):

return 1 if n == 0 else n * factorial(n - 1)

Now whenever a call to factorial() is made, we get a printout of the arguments:

>>> factorial(5)
factorial(5)
factorial(4)
factorial(3)
factorial(2)
factorial(1)
factorial(0)
120

Notice that the recursive calls also call the transformed function. This is because the name factorial is now bound to
the nested tracer function in the enclosing environment of factorial(), so looking up the name results in the tracer
function rather than the original one. A side effect of this is that we have mutual recursion where a set of functions
indirectly make recursive calls through each other. In this case, the tracer calls the original factorial(), which calls
the tracer, as shown in the diagram in Figure 11.2 for factorial(2) from Python Tutor.

11.3. Nested Functions 92

http://www.pythontutor.com/

Programming Language Principles and Paradigms, Release 0.4

Objects

function

trace(fn)

function

factorial(n)

function

tracer(*args) [parent=f1]

int

2

tuple

0

int

1

tuple

0

int

0

tuple

0

How do I use this?

These Python Tutor users are asking for help right now. Please volunteer to help!
user_f73 from Novosibirsk, Russia needs help with Python2 click to help (active a minute ago, requested a minute ago)

Print output (drag lower right corner to resize)

Frames

Global frame

trace

factorial

f1: trace

fn

tracer

Return
 value

tracer [parent=f1]

args

factorial

n

tracer [parent=f1]

args

factorial

n

tracer [parent=f1]

args

factorial

n

Return
 value

Click the button above to create a permanent link to your visualization. To report a bug, paste the link along with a
brief error description in an email addressed to philip@pgbovine.net

To embed this visualization in your webpage, click the 'Generate embed code' button above and paste the resulting
HTML code into your webpage. Adjust the height and width parameters and change the link to https:// if needed.

Python Tutor (code on GitHub) supports seven languages (despite its name!):

1. Python 2.7 and 3.6 with limited module imports and no file I/O. The following modules may be imported: bisect,
collections, copy, datetime, functools, hashlib, heapq, itertools, json, math, operator, random, re, string, time,
typing, io/StringIO. Backend source code.

2. Java using Oracle's Java 8. The original Java visualizer was created by David Pritchard and Will Gwozdz. It
supports StdIn, StdOut, most other stdlib libraries, Stack, Queue, and ST. (To access Java's builtin Stack/Queue
classes, write import java.util.Stack; — note, import java.util.*; won't work.) Backend source code.

3. JavaScript running in Node.js v6.0.0 with limited support for ES6. Backend source code.

4. TypeScript 1.4.1 running in Node.js v6.0.0. Backend source code.

5. Ruby 2 using MRI 2.2.2. Backend source code.

6. C using gcc 4.8, C11, and Valgrind Memcheck. Backend source code.

7. C++ using gcc 4.8, C++11, and Valgrind Memcheck. Backend source code.

Python 3.6

Edit code | Live programming
 line that has just executed
 next line to execute

Click a line of code to set a breakpoint; use the Back and Forward buttons to jump there.

 Step 44 of 49

Visualized using Python Tutor by Philip Guo (@pgbovine)

Help us improve this tool by clicking below whenever you learn something:

1 def trace(fn):
2 def tracer(*args):
3 print('{}({})'.format(fn.__name__,
4 ', '.join(str(arg) for arg
5 return fn(*args)
6 return tracer
7
8 @trace
9 def factorial(n):
10 return 1 if n == 0 else n * factorial(n - 1)
11
12 factorial(2)

factorial(2)
factorial(1)
factorial(0)

Figure 11.2: Mutual recursion resulting from decorating a recursive function.

11.3. Nested Functions 93

CHAPTER

TWELVE

LAMBDA FUNCTIONS

Nested function definitions allow the construction of functions at runtime, fulfilling one of the requirements for func-
tions to be a first-class entity. So far, however, we’ve only seen nested function definitions that are named, introducing
a binding into the definition environment. This is in contrast to other first-class entities, such as data values, that can
be created without being bound to a name. Just like it can be useful to construct a value without a name, such as when
passing it as an argument or returning it, it can be useful to construct unnamed functions. These are called anonymous
or lambda functions.

Lambda functions are ubiquitous in functional languages, but many common imperative languages also provide some
form of lambda functions. The syntax and capabilities differ between different languages, and we will examine a few
representative examples.

12.1 Scheme

Lambdas are a common construct in the Lisp family of languages, those languages being primarily functional, and
Scheme is no exception. The lambda special form constructs an anonymous function:

(lambda (<parameters>) <body>)

A function definition using the define form can then be considered a shorthand for a variable definition and a lambda:

(define (<name> <parameters>) <body>)
-->

(define <name> (lambda (<parameters>) <body>))

As an example, consider the following function that creates and returns an anonymous function that adds a given number
to its argument:

(define (make-adder n)
(lambda (x)
(+ x n)

)
)

This is simpler and more appropriate than an equivalent definition that only uses define:

(define (make-adder n)
(define (adder x)
(+ x n)

)
(continues on next page)

94

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

adder
)

We can then call the result of make-adder on individual arguments:

> (define add3 (make-adder 3))
> (add3 4)
7
> (add3 5)
8
> ((make-adder 4) 5)
9

Nested functions in Scheme use static scope, so the anonymous function has access to the variable n in its definition
environment. It then adds its own argument x to n, returning the sum.

Scheme is not purely functional, allowing mutation of variables and compound data. Nested functions, whether anony-
mous or not, can modify variables in their non-local environment. The following function creates a counter function
that returns how many times it has been called:

(define (make-counter)
(let ((count 0))
(lambda ()
(set! count (+ count 1))
(- count 1)

)
)

)

The set! form mutates a variable to the given value. We can then use the make-counter function as follows:

> (define counter (make-counter))
> (counter)
0
> (counter)
1
> (counter)
2

12.2 Python

Python supports anonymous functions with the lambda expression. This takes the following form:

lambda <parameters>: <body expression>

The syntax of lambda expressions in Python produce a constraint on anonymous functions that is not present in named
nested functions: the body must be a single expression, and the value of that expression is automatically the return
value of the function. In practice, this limitation is usually not a problem, since lambdas are often used in functional
contexts where statements and side effects may not be appropriate.

The following is a definition of the greater_than() higher-order function that uses a lambda:

12.2. Python 95

Programming Language Principles and Paradigms, Release 0.4

def make_greater_than(threshold):
return lambda value: value > threshold

As can be seen in this example, simple nested functions that are used in only a single place can be written more
succinctly with a lambda expression than with a definition statement.

While lambda functions in Python have access to their definition environment, they are syntactically prevented from
directly modifying bindings in the non-local environment.

12.3 Java

Java does not allow nested function definitions, but it does have syntax for what it calls “lambda expressions.” In
actuality, this construct constructs an anonymous class with a method corresponding to the given parameters and body,
and the compiler infers the base type of this class from the context of its use.

The following example uses a lambda expression to construct a functor-like object:

public static IntPredicate makeGreaterThan(int threshold) {
return value -> value > threshold;

}

We can then use the result as follows:

IntPredicate gt3 = makeGreaterThan(3);
System.out.println(gt3.test(2)); // prints out false
System.out.println(gt3.test(20)); // prints out true

Java allows a lambda to take in any number of arguments, and providing types for the parameters is optional. The body
can be a single expression or a block containing arbitrary statements.

On the other hand, Java places a significant restriction on lambda expressions. A lambda can only access variables in
its definition environment that are never reassigned, and it cannot modify them itself. This is because lambdas are not
implemented as closures, but rather as functor-like objects that store “captured” variables as members. The following
is effectively equivalent to the code above, but using named classes and methods:

public static IntPredicate makeGreaterThan(int threshold) {
return Anonymous(threshold);

}

class Anonymous implements IntPredicate {
Anonymous(int threshold) {
this.threshold = threshold;

}

public boolean test(int value) {
return value > threshold;

}

private final int threshold;
}

12.3. Java 96

Programming Language Principles and Paradigms, Release 0.4

12.4 C++

Like Java, C++ has lambda expressions, but they provide more functionality than those in Java. A programmer can
specify which variables in the definition environment are captured, and whether they are captured by value or by
reference. The former creates a copy of a variable, while the latter allows a captured variable to be modified by the
lambda.

The simplest lambda expressions are those that do not capture anything from the enclosing environment. Such a lambda
can be written as a top-level function instead3, and C++ even allows a captureless lambda to be converted to a function
pointer. For example, the following code passes a lambda function to a higher-order function that takes in a function
pointer:

int max_element(int *array, size_t size, bool (*less)(int, int)) {
assert(size > 0);
int max_so_far = array[0];
for (size_t i = 1; i < size; i++) {
if (less(max_so_far, array[i])) {
max_so_far = array[i];

}
}
return max_so_far;

}

int main() {
int array[5] = { 3, 1, 4, 2, 5 };
cout << max_element(array, 5,

[](int a, int b) {
return a > b;

})
<< endl;

}

The code constructs a lambda function that returns true if the first element is bigger than the second, and passing that
to max_element() finds the minimum rather than the maximum element.

Lambdas that capture variables, whether by value or by reference, have state that is associated with a specific evaluation
of a lambda expression, and this state can differ between different calls to the enclosing function. As a result, such a
lambda is not representable as a top-level function. Instead, C++ implicitly defines a functor type for a capturing
lambda. Evaluating a capturing lambda expression constructs an instance of this functor type, with the captured values
and references stored as non-static members. Since the functor type is implicitly defined, type deduction with the auto
keyword is usually used where the type of the functor is required.

The following is an example that uses a lambda to define a greater-than functor:

auto make_greater_than(int threshold) {
return [=](int value) {
return value > threshold;

};
}

int main() {
auto gt3 = make_greater_than(3);

(continues on next page)

3 A captureless lambda is actually implemented as a functor, avoiding an indirection when the lambda is invoked without first converting it to a
function pointer.

12.4. C++ 97

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

cout << gt3(2) << endl; // prints 0
cout << gt3(20) << endl; // prints 1
cout << make_greater_than(30)(20) << endl; // prints 0

}

The = in the capture list for the lambda specifies that all variables from the enclosing environment that are used by the
lambda should be captured by value. The code above is equivalent to the following that explicitly uses a functor:

class GreaterThan {
public:
GreaterThan(int threshold_in) : threshold(threshold_in) {}

bool operator()(int value) const {
return value > threshold;

}

private:
const int threshold;

};

auto make_greater_than(int threshold) {
return GreaterThan(threshold);

}

As indicated in the code above, a variable captured by value is implicitly qualified as const.

An enclosing variable may also be captured by reference. However, a variable that is captured by reference does not
have its lifetime extended. The reasoning for this is twofold. The first, practical reason is that C++ implementations
generally use stack-based management of automatic variables, and when a function returns, its activation record on the
stack is reclaimed. Requiring that a variable live past its function invocation prevents activation records from being
managed using a stack. The second, more fundamental reason is that the RAII (i.e. scope-based resource management)
paradigm in C++ requires that when an automatic variable goes out of scope, the destructor for its corresponding
object is run and the object reclaimed. Relaxing this requirement would result in undesirable effects similar to those of
finalizers in garbage-collected languages.

The end result is that a lambda functor that captures by reference should not be used past the existence of its enclosing
function invocation. The following counter definition is therefore erroneous:

auto make_counter() {
int count = 0;
return [&]() {
return count++;

};
}

The lifetime of the count variable ends when make_counter() returns, so that calling the lambda functor afterwards
erroneously uses a dead object.

An alternative is to capture count by value, which stores a copy as a member of the lambda, and then mark the lambda
as mutable. This removes the implicit const qualification from variables captured by value, allowing them to be
modified:

auto make_counter() {
int count = 0;

(continues on next page)

12.4. C++ 98

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

return [=]() mutable {
return count++;

};
}

This definition is equivalent to the Counter functor we defined in Function Objects.

12.5 Common Patterns

We now take a look at some common computational patterns in functional programming. We will look at how to
abstract these patterns as higher-order functions, as well as how to use them with lambda functions.

12.5.1 Sequence Patterns

A number of functional patterns operate over sequences. These patterns take in a sequence and a function and apply
the function to elements of the sequence, producing a new sequence or value as a result. Since these are functional
patterns, the original sequence is left unchanged.

Map

The map pattern takes a sequence and a function and produces a new sequence that results from applying the function
to each element of the original sequence. For example, the following adds 1 to each element of a Scheme list:

> (map (lambda (x) (+ x 1)) '(1 2 3))
(2 3 4)

We can define this higher-order function as follows, using the name map1 to avoid conflict with the built-in Scheme
map:

(define (map1 func lst)
(if (null? lst)

lst
(cons (func (car lst))

(map1 func (cdr lst)))
)

)

Applying map1 to an empty list results in an empty list. Otherwise, map1 applies the given function to the first item in
the list and recursively calls map1 on the rest of the list.

The built-in Scheme map also works with a non-unary function, as long as the number of lists provided matches the
number of arguments the function expects. For instance, we can apply cons to corresponding elements from two lists
as follows:

> (map cons '(1 2 3) '(4 5 6))
((1 . 4) (2 . 5) (3 . 6))

The argument lists must have the same length. We can define our own version of this as a variadic procedure:

12.5. Common Patterns 99

Programming Language Principles and Paradigms, Release 0.4

(define (map-n func list1 . lists)
(if (null? list1)

'()
(let ((firsts (map1 car (cons list1 lists)))

(rests (map1 cdr (cons list1 lists))))
(cons (apply func firsts)

(apply map-n func rests)
)

)
)

)

We use map1 to obtain the first element from each list, as well as the rest of each list. We then use apply to apply func
to the first elements, as well as to recursively map func across the rest of the lists.

Python has a similar built-in map() that takes in a function and at least one sequence, producing a new sequence that
results from applying the function to corresponding elements from the input sequences. Unlike Scheme’s version,
Python allows the sequences to differ in length, with the result sequence having the same length as the shortest input
sequence.

>>> list(map(lambda x, y: x + y, [1, 2, 3], (4, 5)))
[5, 7]

Reduce

In the reduce pattern, a two-argument function is applied to the first two items in a sequence, then it is applied to
the result and the next item, then to the result of that and the next item, and so on. A reduction may be left or right
associative, but the former is more common. Figure 12.1 illustrates the difference between left- and right-associative
reductions.

1 2 3 4

3

6

10

1 2 3 4

10

9

7

Figure 12.1: Left-associative and right-associative reductions.

Often, if only a single item is in the sequence, that item is returned without applying the function. Some definitions
allow an initial value to be specified as well for the case in which the sequence is empty.

The following examples compute the sum and maximum element of a Scheme list:

> (reduce-right (lambda (x y) (+ x y)) '(1 2 3 4))
10
> (reduce-right (lambda (x y) (if (> x y) x y)) '(1 2 3 4))
4

12.5. Common Patterns 100

Programming Language Principles and Paradigms, Release 0.4

We can define a right-associative reduction as follows, which assumes that the given list has at least one element:

(define (reduce-right func lst)
(if (null? (cdr lst))

(car lst)
(func (car lst) (reduce-right func (cdr lst)))

)
)

Python includes a left-associative reduce() function in the functools module.

Filter

The filter pattern uses a predicate function to filter items out of a list. A predicate is a function that takes in a value and
returns true or false. In filter, elements that test true are retained while those that test false are discarded.

The following example filters out the odd elements from a list:

> (filter (lambda (x) (= (remainder x 2) 0)) '(1 2 3 4))
(2 4)

The following is a definition of filter:

(define (filter pred lst)
(if (null? lst)

lst
(if (pred (car lst))

(cons (car lst) (filter pred (cdr lst)))
(filter pred (cdr lst))

)
)

)

Python provides a built-in filter() function as well.

Any

The any pattern is a higher-order version of or (disjunction). It takes a predicate and applies the predicate to each
successive item in a list, returning the first true result from the predicate. If no item tests true, then false is returned.
Some languages use the name find for this pattern rather than any.

The following examples search a list for an even value:

> (any (lambda (x) (= (remainder x 2) 0)) '(1 2 3 4))
#t
> (any (lambda (x) (= (remainder x 2) 0)) '(1 3))
#f

A short-circuiting any function can be defined as follows:

(define (any pred lst)
(if (null? lst)

#f
(let ((result (pred (car lst))))

(continues on next page)

12.5. Common Patterns 101

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

(or result
(any pred (cdr lst))

)
)

)
)

The every pattern can be similarly defined as the higher-order analogue of conjunction.

12.5.2 Composition

Programs often compose functions, applying a function to the result of applying another function to a value. Wrapping
these two function applications together in a single function enables both operations to be done with a single call. For
example, the following multiplies each item in a list by three and then adds one:

> (map (compose (lambda (x) (+ x 1))
(lambda (x) (* 3 x)))

'(3 5 7)
)

(10 16 22)

We can define compose as follows:

(define (compose f g)
(lambda (x)
(f (g x))

)
)

12.5.3 Partial Application and Currying

Partial application allows us to specify some arguments to a function at a different time than the remaining arguments.
Supplying 𝑘 arguments to a function that takes in 𝑛 arguments results in a function that takes in 𝑛− 𝑘 arguments.

As an example, suppose we want to define a function that computes powers of two. In Python, we can supply 2 as the
first argument to the built-in pow() function to produce such a function. We need a partial-application higher-order
function such as the following:

def partial(func, *args):
def newfunc(*nargs):

return func(*args, *nargs)

return newfunc

We can then construct a powers-of-two function as follows:

>>> power_of_two = partial(pow, 2)
>>> power_of_two(3)
8
>>> power_of_two(7)
128

12.5. Common Patterns 102

Programming Language Principles and Paradigms, Release 0.4

Python actually provides a more general implementation of partial() that works for keyword arguments as well in
the functools module. C++ provides partial application using the bind() template in the <functional> header.

A related but distinct concept is currying, which transforms a function that takes in 𝑛 arguments to a sequence of 𝑛
functions that each take in a single argument. For example, the pow() function would be transformed as follows:

>>> curried_pow(2)(3)
8

The curried version of the function takes in a single argument, returning another function. The latter takes in another
argument and produces the final value. Since the original pow() takes in two arguments, the curried function chain
has length two.

We can define currying for two-parameter functions as follows in Python:

def curry2(func):
def curriedA(a):

def curriedB(b):
return func(a, b)

return curriedB

return curriedA

Then we can call curry2(pow) to produce a curried version of pow().

We can also define an “uncurry” operation that takes in a function that must be applied to a sequence of 𝑛 arguments
and produce a single function with 𝑛 parameters. The following does so for a sequence of two arguments:

def uncurry2(func):
def uncurried(a, b):

return func(a)(b)

return uncurried

>>> uncurried_pow = uncurry2(curried_pow)
>>> uncurried_pow(2, 3)
8

Some functional languages, such as Haskell, only permit functions with a single parameter. Functions that are written
to take in more than one parameter are automatically curried.

12.5. Common Patterns 103

CHAPTER

THIRTEEN

CONTINUATIONS

An running program encompasses two types of state: the data that the program is using and the control state of the
program, such as the stack of active functions and the code locations in each of those functions. This control state can
be represented in the form of a continuation.

A continuation can be invoked in order to return control to a previous state. Since a continuation only represents control
state, invoking a continuation does not return data to their previous state. Instead, data retain the values they had at the
time the continuation was invoked. The following is an analogy of invoking a continuation by Luke Palmer:

Say you’re in the kitchen in front of the refrigerator, thinking about a sandwitch [sic]. You take a contin-
uation right there and stick it in your pocket. Then you get some turkey and bread out of the refrigerator
and make yourself a sandwitch, which is now sitting on the counter. You invoke the continuation in your
pocket, and you find yourself standing in front of the refrigerator again, thinking about a sandwitch. But
fortunately, there’s a sandwitch on the counter, and all the materials used to make it are gone. So you eat
it. :-)

In most non-functional languages, a continuation only exists in implicit form, and there is a restricted set of operations
that can be done to invoke a continuation. In many functional languages, however, continuations are first-class entities
that can be passed as parameters and returned from functions. We first examine restricted forms of continuations before
considering the more general, first-class version.

13.1 Restricted Continuations

Simple forms of control flow, such as conditionals and loops, do not involve continuations, since they do not return to
a previous state of control. Subroutines and exceptions, on the other hand, do revert control to a previous state and thus
make implicit use of continuations.

13.1.1 Subroutines

Subroutines involve transfer of control between a caller and callee. When a subroutine is called, the control state of the
caller must be saved, so that when the subroutine completes, control can be transferred back to the caller. Implemen-
tations make use of activation records and call stacks that record the sequence of active calls as well as information
about how to return execution to a previous call. These data structures represent the control state of a program and thus
constitute a continuation.

Languages restrict how the implicit continuation representing a caller’s state can be invoked. In some languages,
including many functional languages such as Scheme, the caller’s continuation is only invoked when the subroutine
completes normally. Other languages have a mechanism to terminate a subroutine early, sometimes called abrupt
termination, and invoke the continuation of the caller. In imperative languages, this usually takes the form of a return
statement. For example, the following Python function uses a return to immediately invoke the caller’s continuation:

104

https://groups.google.com/forum/#!msg/perl.perl6.language/-KFNPaLL2yE/_RzO8Fenz7AJ

Programming Language Principles and Paradigms, Release 0.4

def foo(x):
return x # invoke caller's continuation
more code, but not executed
if x < 0:

bar(x)
baz(x)
...

As with any continuation, invoking a caller’s continuation does not restore the previous state of data. For example,
consider the following Python code:

def outer():
x = 0

def inner():
nonlocal x
x += 1

inner()
print(x)

When the call to inner() completes, the continuation of outer() is resumed, but the value of x is not restored to its
state before the call to inner(). Instead, it retains its modified value, and the code prints 1.

A more general concept provided by some languages is a coroutine, which involves two routines passing control to
each other by invoking each other’s continuation. Coroutines differ from mutual recursion in that each routine’s control
state is resumed when it is invoked rather than creating a fresh function invocation with its own state.

The following is pseudocode for coroutines that pass control to each other, with one producing items and the other
consuming them:

var q := new queue

coroutine produce
loop

while q is not full
create some new items
add the items to q

yield to consume

coroutine consume
loop

while q is not empty
remove some items from q
use the items

yield to produce

Both coroutines yield control to the other. Unlike with subroutines, when a coroutine is passed control, execution
resumes from where it previously paused and in the context of the same environment.

Python provides an implementation of coroutines over a tasking layer, with several abstractions for passing data between
running coroutines and waiting for completion of an action. The following implements the producer/consumer model
using an asyncio.Queue for passing values between the producer and consumer:

13.1. Restricted Continuations 105

Programming Language Principles and Paradigms, Release 0.4

import asyncio

q = asyncio.Queue(2) # queue capacity of 2

async def produce():
for i in range(5):

print('[producer] putting', i)
await q.put(i)
print('[producer] done putting', i)

async def consume():
for i in range(5):

print('[consumer] got:', await q.get())

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(produce(), consume()))

The latter two statements start the producer and consumer coroutines running and wait for their completion. The
producer passes control to the coroutine returned by q.put(i), which places an item into the queue. Execution will
not return to the producer until this completes, so the producer will be forced to wait if the queue is full. The consumer
extracts items from the queue using the q.get() coroutine, waiting if no items are available. The following is the
output when the code is run:

[producer] putting 0
[producer] done putting 0
[producer] putting 1
[producer] done putting 1
[producer] putting 2
[consumer] got: 0
[consumer] got: 1
[producer] done putting 2
[producer] putting 3
[producer] done putting 3
[producer] putting 4
[consumer] got: 2
[consumer] got: 3
[producer] done putting 4
[consumer] got: 4

This demonstrates how execution passes back and forth between the consumer and producer coroutines.

13.1.2 Exceptions

Exceptions also cause control to be passed from one execution state to an earlier one, but unlike returning from a
subroutine, the receiver of control need not be the direct caller of a function. Upon entering a try block, the control
state is saved and the associated exception handlers are added to a stack of active handlers. When an exception is raised,
the handler stack is searched for a handler that can accommodate the exception type, the continuation of the associated
function is invoked, and the handler code is executed.

As a concrete example, consider the following Python code:

def foo(x):
try:

(continues on next page)

13.1. Restricted Continuations 106

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

bar(x)
except:

print('Exception')

def bar(x):
baz(x)

def baz(x):
raise Exception

foo(3)

When the try statement in the invocation of foo(3) is reached. the associated exception handler is added to the
handler stack. Execution proceeds to the call to bar(3) and then to baz(3), which raises an exception. This passes
control to the first exception handler that can handle an exception of type Exception, which was located in the call to
foo(3). Thus, the latter’s continuation is invoked and the exception handler is run.

The specific mechanisms used to provide exceptions vary between languages and implementations. Some languages
don’t incorporate exceptions directly but provide a control mechanism that enables an exception mechanism to be built
on top of it. For example, the C standard library header setjmp.h defines a setjmp() function that saves the execution
state of a function, and a corresponding longjmp() function that restores the state at the time of the call to setjmp().
Exceptions can also be implemented with first-class continuations, as we will see below.

13.1.3 Generators

A generator is a generalization of a subroutine, allowing its execution to be paused and later resumed. A subroutine is
always executed from its entry point, and every entry into a subroutine creates a new activation record. On the other
hand, a generator can suspend its execution, and the programmer can resume execution of the generator at the point
where its execution state was suspended and using the same activation record. Thus, the paused state of a generator is
a form of continuation.

Generators are usually used to write iterators that compute their values lazily. When a generator computes an item, it
yields the item to its caller by invoking the continuation of the caller, much like a subroutine. Upon resumption of the
generator, the next value is computed and yielded to its caller, which need not be the same function as the previous
caller.

The following is a generator in Python that produces an infinite sequence of natural numbers:

def naturals():
num = 0
while True:

yield num
num += 1

Generators in Python implement the same interface as an iterator, so the next item can be obtained by calling the next()
function on a generator:

>>> numbers = naturals()
>>> next(numbers)
0
>>> next(numbers)
1

(continues on next page)

13.1. Restricted Continuations 107

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

>>> next(numbers)
2

We can use a generator to represent a range, computing each value as the generator is resumed:

def range2(start, stop, step = 1):
while start < stop:

yield start
start += step

The sequence of values produced by this generator is finite, and after the last value is produced and the body of
range2() exits, a StopIteration exception is automatically raised:

>>> values = range2(0, 10, 3)
>>> next(values)
0
>>> next(values)
3
>>> next(values)
6
>>> next(values)
9
>>> next(values)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

A StopIteration is used by the Python for loop to determine the end of an iterator:

>>> for i in range2(0, 10, 3):
... print(i)
...
0
3
6
9

As another example, we can define a unary version of the built-in map using a generator:

>>> def map_unary(func, iterable):
... for item in iterable:
... yield func(item)
...
>>> map_unary(lambda x: x + 1, [1, 4, -3, 7])
<generator object map_unary at 0x1032f3f40>
>>> list(map_unary(lambda x: x + 1, [1, 4, -3, 7]))
[2, 5, -2, 8]

The built-in map is actually variadic, applying an 𝑛-ary function to items taken from 𝑛 iterables:

>>> for item in map(lambda x, y: x - y, [1, 2, 3], (-4, -5, -6, -7)):
... print(item)
...

(continues on next page)

13.1. Restricted Continuations 108

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

5
7
9

As can be seen from this example, map stops when the shortest input iterable is exhausted. We can attempt to write a
variadic generator similar to map:

>>> def map_variadic(func, *iterables):
... iterators = [iter(it) for it in iterables]
... items = [0] * len(iterables)
... while True:
... for i in range(len(iterators)):
... items[i] = next(iterators[i])
... yield func(*items)
...

We start by obtaining an iterator from each iterable, and then constructing a list that will hold an element from each
iterator, initialized with dummy zero values. We follow this with an infinite loop that obtains the next item from
each iterator, storing it in the list, invoking func on these items, and yielding the result. When the shortest iterator is
exhausted, invoking next() on it will raise a StopIteration, and our intent was for this to end the map_variadic()
generator as well. Unfortunately, Python does not allow a StopIteration to be propagated out of a generator:

>>> list(map_variadic(lambda x, y: x - y, [1, 2, 3], (-4, -5, -6, -7)))
Traceback (most recent call last):
File "<stdin>", line 6, in map_variadic

StopIteration

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

RuntimeError: generator raised StopIteration

Instead, a generator is required to terminate normally or with a return when it is complete. Thus, we need to catch
the StopIteration and then exit:

>>> def map_variadic(func, *iterables):
... iterators = [iter(it) for it in iterables]
... items = [0] * len(iterables)
... try:
... while True:
... for i in range(len(iterators)):
... items[i] = next(iterators[i])
... yield func(*items)
... except StopIteration:
... pass
...

Here, we’ve used a dummy pass statement in the except clause, since execution will proceed to the end of the generator
body and exit. It would be equally valid to use a return statement instead. The generator now works as intended:

>>> list(map_variadic(lambda x, y: x - y, [1, 2, 3], (-4, -5, -6, -7)))
[5, 7, 9]

13.1. Restricted Continuations 109

Programming Language Principles and Paradigms, Release 0.4

The yield from statement can be used to delegate to another generator (or iterator). The following is a definition of
a positives() generator that delegates to an instance of naturals():

>>> def positives():
... numbers = naturals()
... next(numbers) # discard 0
... yield from numbers # yield the remaining items in numbers
...
>>> numbers = positives()
>>> next(numbers)
1
>>> next(numbers)
2
>>> next(numbers)
3

We construct a naturals() generator, discard the initial 0, and then use yield from to produce the remaining items
from the naturals() generator.

Python also has generator expressions, similar to list comprehensions, that succinctly produce a generator. The follow-
ing produces a generator of negative integers from naturals():

>>> negatives = (-i for i in naturals() if i != 0)
>>> next(negatives)
-1
>>> next(negatives)
-2
>>> next(negatives)
-3

As with list comprehensions, the filtering conditional is optional in a generator expression.

Generators are also called semicoroutines, since they involve a standard routine that passes control to a resumable
routine. Unlike a coroutine, however, a generator can only return control to its caller, while a full coroutine can pass
control to any other coroutine.

13.2 First-Class Continuations

In some languages, continuations are first-class entities, allowing the current control state to be saved in an explicit data
structure, passed as a parameter, and invoked from arbitrary locations. First-class continuations can be used to emulate
any of the restricted forms of continuations above. Depending on the language, it may only be permitted to invoke a
continuation once, or a continuation may be resumed any number of times.

In Scheme, the call-with-current-continuation procedure, often abbreviated as call/cc, creates a continua-
tion object representing the current control state. The call/cc procedure must be passed an argument:

(call-with-current-continuation <procedure>)

Here, <procedure> must be a Scheme procedure that takes an argument, and call/cc invokes this procedure with
the newly created continuation object as the argument. The called procedure may use the continuation like any other
data item, including discarding it, saving it in a data structure, and returning it, as well as invoking it. For example, in
the following code, the procedure discards the continuation and returns a value normally:

13.2. First-Class Continuations 110

Programming Language Principles and Paradigms, Release 0.4

> (+ 1
(call/cc (lambda (cc)

3
)

)
)

4

The continuation object constructed by the invocation of call/cc above represents the following execution state:

(+ 1 <value>)

Here, <value> replaces the call to call/cc, and it will be replaced by the value with which the continuation is invoked.

If the procedure invoked by call/cc returns a value normally, the invocation of call/cc evaluates to that same value,
the same behavior as a standard function call. In the example above, the procedure returns the value 3, which replaces
the call to call/cc, resulting in a final value of 4.

On the other hand, if the continuation created by call/cc is invoked, then control resumes at the location of the
call/cc. A continuation must be passed a value when it is invoked, and the call/cc evaluates to that value:

> (+ 1
(call/cc (lambda (cc)

(cc 5)
3

)
)

)
6

In the code above, the continuation represents the same execution state of (+ 1 <value>). The function argument of
call/cc invokes the continuation with value 5, causing execution to immediately resume at the point where call/cc
is called, with the value 5 replacing the call to call/cc, as if it were a standard function call that produced the given
value. This results in the execution (+ 1 5), resulting in a final value of 6.

More interesting behavior can occur when a continuation is saved in a variable or data structure. Consider the following:

> (define var
(call/cc (lambda (cc)

cc
)

)
)

The procedure called by call/cc returns the continuation, so the call/cc invocation evaluates to the continuation,
which is then bound to var. The continuation itself represents the execution:

(define var <value>)

We can bind another variable to the same object:

> (define cont var)

Now we can use this new variable to invoke the continuation:

13.2. First-Class Continuations 111

Programming Language Principles and Paradigms, Release 0.4

> (cont 3) ; executes (define var 3)
> var
3
> (cont 4) ; executes (define var 4)
> var
4

Invoking the continuation with a value causes evaluation to resume at the call/cc, with the given value replacing the
call/cc. Thus, invoking cont with the value 3 results in the following:

(define var
(call/cc (lambda (cc)

cc
)

)
)
-->

(define var <value>)
-->

(define var 3)

Thus, var is bound to 3. If we invoke cont with 4, we get:

(define var
(call/cc (lambda (cc)

cc
)

)
)
-->

(define var <value>)
-->

(define var 4)

The result is that var is now bound to 4.

As a more complex example, consider the following definition of a factorial procedure:

(define cont '())

(define (factorial n)
(if (= n 0)

(call/cc (lambda (cc)
(set! cont cc)
1

)
)
(* n (factorial (- n 1)))

)
)

The base case is a call to call/cc. Then when (factorial 3) is called, the execution state when the base case is
reached is:

13.2. First-Class Continuations 112

Programming Language Principles and Paradigms, Release 0.4

(* 3 (* 2 (* 1 <value>)))

As before, <value> represents the call to call/cc. The argument to call/cc sets the global variable cont to refer
to the newly created continuation and then evaluates normally to 1. The value 1 thus replaces the call/cc, resulting
in a final value of 6:

> (factorial 3)
6

If we then invoke the continuation with the value 3, the 3 replaces the call/cc in the execution state represented by
the continuation:

> (cont 3) ; executes (* 3 (* 2 (* 1 3)))
18

If we call (factorial 5), cont is modified to refer to a continuation representing the execution:

(* 5 (* 4 (* 3 (* 2 (* 1 <value>)))))

Invoking the continuation on 4 then results in 480:

> (factorial 5)
120
> (cont 4) ; executes (* 5 (* 4 (* 3 (* 2 (* 1 4)))))
480

13.2.1 Signaling Errors

We can use first-class continuations to implement a basic mechanism for aborting a computation and signaling an error.
We begin with a simple procedure to print an error message:

(define (report-error message)
(begin (display "Error: ")

(display message)
(newline)

)
)

This procedure expects to be called with a message string, and it prints out Error: followed by the message to standard
out. However, invoking the procedure does not abort the computation in the caller. Thus, if we encounter an error in a
larger computation, invoking report-error causes a message to print but continues where the computation left off.
The following is an example:

(define (inverse x)
(if (= x 0)

(report-error "0 has no inverse")
(/ 1 x)

)
)

The inverse procedure reports an error if the argument x is zero. However, it still returns the (undefined) result of
calling report-error to the caller of inverse. This can result in an error at the interpreter level:

13.2. First-Class Continuations 113

Programming Language Principles and Paradigms, Release 0.4

> (+ (inverse 0) 1)
Error: 0 has no inverse
+: contract violation
expected: number?
given: #<void>
argument position: 1st
other arguments...:
1
context...:
[context elided]

In this Scheme implementation, the newline procedure returns a special #void value, which gets returned by
report-error and then by inverse. The caller of inverse then attempts to add 1 to this result, resulting in an
interpreter error.

In order to abort the computation entirely once an error has been signaled, we can make use of a continuation. We
arrange for the continuation to save the control state at the top level of a program. but with a following invocation to
report-error if an error message is provided:

(define error-continuation
(let ((message (call/cc

(lambda (c) c)
)

)
)

(if (string? message)
(report-error message)

)
message

)
)

Here, the call to call/cc saves the control state with the program about to bind the name message within a let to the
result of invoking the continuation. In the initial computation, the continuation object is passed to the lambda, which
immediately returns it. The call to call/cc evaluates to this value, so message is bound to the continuation object
itself, and the body of the let is evaluated. This checks if message is a string, calling report-error if this is the
case. The let as a whole evaluates to the value of message, which is then bound to error-continuation in the
global frame.

If we invoke error-continuation again, execution will resume at the point of binding message, and it will eventually
result in error-continuation being rebound to something other than the continuation object. To avoid losing the
continuation, we can bind another name to it:

(define error error-continuation)

Now even if error-continuation is rebound, the name error still refers to the continuation object.

If we invoke error with a string, the continuation is invoked with that value, and the value is plugged into where the
continuation was created. Thus, message is bound to the string, and the body of the let is evaluated. Since message
is a string, report-error is called, printing an error message. The let evaluates to the message string, which is then
bound to the name error-continuation in the global frame. At this point, execution has reached the top level, so
computation is completed without causing an error in the interpreter.

If we repeat our previous example, but invoking error rather than report-error, we get the following:

13.2. First-Class Continuations 114

Programming Language Principles and Paradigms, Release 0.4

(define (inverse x)
(if (= x 0)

(error "0 has no inverse")
(/ 1 x)

)
)

> (+ (inverse 0) 1)
Error: 0 has no inverse

We no longer have an error reported by the interpreter itself.

13.2.2 Call and Return

First-class continuations can be used to emulate the more restricted control constructs provided by imperative languages.
For instance, Scheme does not provide a specific mechanism that allows a procedure to terminate abruptly, returning
a value to the caller. However, we can emulate call and return, including abrupt returns, with continuations. We do so
by explicitly representing the call stack in a data structure that provides push and pop operations:

(define call-stack '())
(define (push-call call)
(set! call-stack (cons call call-stack))

)
(define (pop-call)
(let ((caller (car call-stack)))
(set! call-stack (cdr call-stack))
caller

)
)

We will use this call stack to store a procedure’s continuation when it calls another procedure. A return just pops a
continuation off the stack and invokes it with the given return value:

(define (return value)
((pop-call) value)

)

We then provide a mechanism for saving a caller’s continuation, by pushing it onto the call stack, and invoking the callee.
For simplicity, we restrict ourselves to single-argument functions here, but this can be generalized using Scheme’s
variadic arguments.

(define (call func x)
(call-with-current-continuation (lambda (cc)

(push-call cc)
(func x)

)
)

)

We can then write procedures that use the call stack to terminate abruptly:

(define (foo x)
(if (<= x 10)

(continues on next page)

13.2. First-Class Continuations 115

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

(return x) ; return x if <= 10
)
(let ((y (- x 10)))
(return (+ x (/ x y))) ; otherwise return x + x / (x - 10)

)
(some more stuff here) ; control never reaches here

)

(define (bar x)
(return (- (call foo x))) ; call foo and return the negation
(dead code) ; control never reaches here

)

We can then call foo and bar:

> (+ 1 (call foo 3))
4
> (+ 1 (call foo 20))
23
> (+ 2 (call bar 3))
-1
> (+ 2 (call bar 20))
-20

13.2.3 Exceptions

We can simulate exception handling with a handler stack, using the same approach as call and return above. The
following is a complete implementation:

(define handler-stack '())
(define (push-handler handler)
(set! handler-stack (cons handler handler-stack))

)
(define (pop-handler)
(let ((handler (car handler-stack)))
(set! handler-stack (cdr handler-stack))
handler

)
)

(define exception-state #f)
(define (set-exception)
(set! exception-state #t)

)
(define (clear-exception x)
(set! exception-state #f)
x

)

(define (throw exception)
(set-exception)

(continues on next page)

13.2. First-Class Continuations 116

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

((pop-handler) exception)
)

(define (try func x handler_func)
(let ((result (call-with-current-continuation (lambda (cc)

(push-handler cc)
(func x)

)
)

)
)

(if exception-state
(clear-exception (handler_func result))
result

)
)

)

We can then define functions that use exceptions:

(define (foo x)
(if (= x 0)

(throw "invalid argument: 0\n")
(/ 10 x)

)
)

(define (bar x)
(+ (foo x) 1)

)

(define (baz x)
(try bar x (lambda (exception)

(display exception)
'()

)
)

)

Now we can invoke baz with a valid and an erroneous argument:

> (baz 2)
5
> (baz 0)
illegal argument: 0
()

13.2. First-Class Continuations 117

Part III

Theory

118

Programming Language Principles and Paradigms, Release 0.4

We now turn our attention to theoretical foundations of programming languages and the meaning of code. These
foundations are crucial to understanding how languages, programs, and their implementations work.

119

CHAPTER

FOURTEEN

LAMBDA CALCULUS

We start by examining lambda calculus, the mathematical foundation of functional programming, and use it to reason
about how to construct abstractions and model computations. Its simplicity allows us to understand every detail about
how it works, yet it is general enough to enable the expression of arbitrary computations.

Lambda calculus (also 𝜆-calculus), introduced by Alonzo Church in the 1930s, is a model of computation based on
functions. All functions in lambda calculus are anonymous, providing the inspiration for lambda expressions in modern
programming languages.

Lambda calculus is composed of only three elements: variables, function abstraction, and function application. Func-
tion abstraction is the process of defining a new function through a lambda (𝜆) expression. The following is a context-
free grammar for 𝜆-calculus:

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 → 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒

| 𝜆 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 . 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (function abstraction)
| 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (function application)
| (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

We will use individual letters, such as 𝑥 to denote a variable. Function application is left associative and has higher
precedence than abstraction, and we will use parentheses where necessary as a result of associativity and precedence.
All functions have exactly one parameter, and functions that would otherwise have multiple parameters must be curried.

Since function application is left associative, a sequence of applications such as 𝑓 𝑔 ℎ is equivalent to ((𝑓 𝑔) ℎ). And
since function application has higher precedence than abstraction, abstraction extends as far to the right as possible.
Consider the following example:

𝜆𝑥. 𝑥 𝜆𝑦. 𝑥 𝑦 𝑧

The 𝜆𝑥 introduces a function abstraction, which extends as far right as possible:

𝜆𝑥. 𝑥 𝜆𝑦. 𝑥 𝑦 𝑧

Thus, this is equivalent to

𝜆𝑥. (𝑥 𝜆𝑦. 𝑥 𝑦 𝑧)

Then within the parentheses, the 𝜆𝑦 introduces a new abstraction, which now extends as far right as possible, to the
point of the existing closing parenthesis:

𝜆𝑥. (𝑥 𝜆𝑦. 𝑥 𝑦 𝑧)

= 𝜆𝑥. (𝑥 𝜆𝑦. (𝑥 𝑦 𝑧))

Finally, within the body of the inner abstraction, we have a sequence of function applications, which are left associative:

𝜆𝑥. (𝑥 𝜆𝑦. ((𝑥 𝑦) 𝑧))

Using the syntax of Scheme, the following is a representation of the function above:

120

Programming Language Principles and Paradigms, Release 0.4

(lambda (x)
(x (lambda (y)

((x y) z)
)

)
)

(This is merely for illustration. Function semantics are different between Scheme and 𝜆-calculus, so using this syntax
is not meant to imply an equivalence.)

The following is the identity function:

𝜆𝑥. 𝑥

The function takes in an argument, binds it to the parameter 𝑥, and immediately returns it.

Functions themselves are first-class values, so they can be bound to parameters and returned. The following is a function
that discards its input and returns the identity function:

𝜆𝑦. 𝜆𝑥. 𝑥

Since abstraction extends as far to the right as possible, this is equivalent to the following parenthesization:

𝜆𝑦. (𝜆𝑥. 𝑥)

As another example, the following function takes in another function as its argument and applies it to the identity
function:

𝜆𝑓. 𝑓 𝜆𝑥. 𝑥

In 𝜆-calculus, functions are statically scoped. The result is that in 𝜆𝑥. 𝐸, 𝑥 is bound in 𝐸, and 𝐸 is the scope of 𝑥. If the
same name is introduced multiple times within nested scopes, then use of the name resolves to the closest abstraction
that introduced it. The following illustrates these rules:

𝜆𝑥. 	𝜆𝑦. 	𝑥	𝜆𝑥. 	𝑥	𝑦

The first abstraction introduces the name 𝑥, so the scope of 𝑥 is the body of the first abstraction. Thus, when 𝑥
appears within the second abstraction, it resolves to the parameter of the first abstraction. The second abstraction itself
introduces the name 𝑦, so use of the name within its body resolves the the associated parameter. Finally, the third
abstraction reintroduces the name 𝑥, so 𝑥 within its body resolves to the closest introduction, i.e. the parameter of the
third abstraction.

An unbound variable is allowed to appear in an expression, and such a variable is called free. For example, in 𝜆𝑦. 𝑥 𝑦,
𝑥 is a free variable in the expression 𝑥 𝑦 but 𝑦 is bound. In 𝜆𝑥. 𝜆𝑦. 𝑥 𝑦, both 𝑥 and 𝑦 are bound in the expression
𝜆𝑦. 𝑥 𝑦. Free variables are useful for reasoning about subexpressions such as 𝜆𝑦. 𝑥 𝑦 in isolation without needing to
consider the full context in which the subexpression appears.

In the expression 𝜆𝑥. 𝐸, replacing all occurrences of 𝑥 with another variable 𝑦 does not affect the meaning as long as
𝑦 does not occur in 𝐸. For example, 𝜆𝑦. 𝑦 is an equivalent expression of the identity function. This process of variable

121

Programming Language Principles and Paradigms, Release 0.4

replacement is called 𝛼-reduction, and we denote this replacement process as follows:

𝜆𝑥. 𝑥

→𝛼 𝜆𝑦. 𝑦

The expressions 𝜆𝑥. 𝑥 and 𝜆𝑦. 𝑦 are 𝛼-equivalent, and we denote this equivalence is follows:

𝜆𝑥. 𝑥 =𝛼 𝜆𝑦. 𝑦

In function application, 𝛼-reduction is used to ensure that names are restricted to the appropriate scope. This translation
has the same effect as environments in an interpreter. As an example, consider applying the identity function to itself:

(𝜆𝑥. 𝑥) (𝜆𝑥. 𝑥)

First, we apply 𝛼-reduction on the argument to ensure that variables in the argument are distinct from those in the
function being applied:

(𝜆𝑥. 𝑥) (𝜆𝑥. 𝑥)

→𝛼 (𝜆𝑥. 𝑥) (𝜆𝑦. 𝑦)

We then replace each occurrence of the parameter with the argument expression in the body of the function being
applied. The result is the body itself after this substitution process:

(𝜆𝑥. 𝑥) (𝜆𝑦. 𝑦)

=⇒ (���XXX𝜆𝑥. 𝑥(𝜆𝑦. 𝑦))

This argument-substituting procedure is called 𝛽-reduction, and it is similar to the call-by-name argument-passing
convention in programming languages. We denote 𝛽-reduction as follows:

(𝜆𝑥. 𝑥) (𝜆𝑦. 𝑦)

→𝛽 𝜆𝑦. 𝑦

This expression is itself𝛼-equivalent to the identity function, and the original expression (𝜆𝑥. 𝑥)(𝜆𝑥. 𝑥) is 𝛽-equivalent
to the identity function since it 𝛽-reduces to the same expression as the identity function:

(𝜆𝑥. 𝑥) (𝜆𝑥. 𝑥) =𝛽 𝜆𝑥. 𝑥

As a more complex example, consider the following:

(𝜆𝑥. 𝑥 𝑥 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤) 𝜆𝑧. 𝑧

In the first function application, the variable names are already distinct, so no 𝛼-reduction is necessary. We can then
apply 𝛽-reduction to obtain:

(𝜆𝑧. 𝑧) (𝜆𝑧. 𝑧) 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

This results in another function application, where the function and argument do share variable names. Applying
𝛼-reduction, we get:

(𝜆𝑧. 𝑧) (𝜆𝑥. 𝑥) 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

This 𝛽-reduces to

(𝜆𝑥. 𝑥) 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

Another 𝛽-reduction results in

𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

122

Programming Language Principles and Paradigms, Release 0.4

This cannot 𝛽-reduce any further, so it is said to be in normal form. The following denotes the full computation:

(𝜆𝑥. 𝑥 𝑥 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤) 𝜆𝑧. 𝑧

→𝛽 (𝜆𝑧. 𝑧) (𝜆𝑧. 𝑧) 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

→𝛼 (𝜆𝑧. 𝑧) (𝜆𝑥. 𝑥) 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

→𝛽 (𝜆𝑥. 𝑥) 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

→𝛽 𝜆𝑤. 𝜆𝑦. 𝑦 𝑤

14.1 Non-Terminating Computation

Evaluating an expression in 𝜆-calculus applies 𝛽-reduction as long as possible, until the expression is in normal form.
Not all evaluations terminate. Consider a function abstraction that applies an argument to itself:

𝜆𝑥. 𝑥 𝑥

If we apply this to the identity function, we get:

(𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥)

→𝛼 (𝜆𝑥. 𝑥 𝑥) (𝜆𝑦. 𝑦)

→𝛽 (𝜆𝑦. 𝑦) (𝜆𝑦. 𝑦)

→𝛼 (𝜆𝑦. 𝑦) (𝜆𝑧. 𝑧)

→𝛽 𝜆𝑧. 𝑧

This evaluation terminates, and as expected, we obtain the identity function. Now consider what happens when we
apply the original function to itself:

(𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥)

→𝛼 (𝜆𝑥. 𝑥 𝑥) (𝜆𝑦. 𝑦 𝑦)

→𝛽 (𝜆𝑦. 𝑦 𝑦) (𝜆𝑦. 𝑦 𝑦)

→𝛼 (𝜆𝑦. 𝑦 𝑦) (𝜆𝑧. 𝑧 𝑧)

→𝛽 (𝜆𝑧. 𝑧 𝑧) (𝜆𝑧. 𝑧 𝑧)

. . .

This evaluation never terminates, as reduction continues to produce an expression that is 𝛼-equivalent to the original
one.

14.2 Normal-Order Evaluation

Function application in 𝜆-calculus is similar to call by name in that the argument is not evaluated before the function
is applied. Instead, the argument expression is substituted for the parameter directly in the body. This results in lazy
evaluation, where the argument expression is not evaluated unless it is needed. As an example, consider the following:

(𝜆𝑦. 𝜆𝑧. 𝑧) ((𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥))

The argument expression is a non-terminating computation, so if we were to evaluate it prior to substitution, the com-
putation as a whole would not terminate. Instead, 𝜆-calculus specifies that the substitution happens first:

(𝜆𝑦. 𝜆𝑧. 𝑧) ((𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥))

→𝛽 𝜆𝑧. 𝑧

14.1. Non-Terminating Computation 123

Programming Language Principles and Paradigms, Release 0.4

Since the parameter 𝑦 does not appear in the body, the argument expression is eliminated once the argument substitution
is made. Thus, the computation terminates, and its end result is the identity function.

There is an important distinction between the evaluation process in 𝜆-calculus and call by name. In the former, function
bodies are reduced to normal form before the function is applied. This is referred to as normal-order evaluation. By
contrast, call by name performs argument substitution before manipulating the body of the function. The following
illustrates normal-order evaluation:

(𝜆𝑥. (𝜆𝑦. 𝑦 𝑦) 𝑥) (𝜆𝑧. 𝑧)

→𝛽 (𝜆𝑥. 𝑥 𝑥) (𝜆𝑧. 𝑧)

→𝛽 (𝜆𝑧. 𝑧) (𝜆𝑧. 𝑧)

→𝛼 (𝜆𝑧. 𝑧) (𝜆𝑤. 𝑤)

→𝛽 𝜆𝑤. 𝑤

Before the function on the left is applied, its body is reduced, which involves applying the function 𝜆𝑦. 𝑦 𝑦 to its
argument 𝑥. This results in the expression 𝑥, so the function on the left becomes 𝜆𝑥. 𝑥 𝑥. This is in normal form, so
the function can now be applied to its argument. Further 𝛼- and 𝛽-reductions result in the final value of the identity
function.

Summarizing the evaluation rules for a function application 𝑓 𝑥, we have the following:

1. Reduce the body of the function 𝑓 until it is in normal form 𝑓𝑛𝑜𝑟𝑚𝑎𝑙.

2. If a bound-variable name appears in both 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 and 𝑥, then perform 𝛼-reduction on 𝑥 so that this is no longer
the case1, obtaining 𝑥𝛼.

3. Perform 𝛽-reduction by substituting 𝑥𝛼 for the parameter of 𝑓𝑛𝑜𝑟𝑚𝑎𝑙 in the body of the latter. The result of this
reduction is the substituted body itself.

4. Proceed to reduce the substituted body until it is in normal form.

If a variable is free in 𝑓 but bound in 𝑥 or vice versa, then 𝛼-reduction must be applied in step 2 to rename the bound
variable. Thus:

(𝜆𝑥. 𝑎 𝑥) 𝜆𝑎. 𝑎 →𝛼 (𝜆𝑥. 𝑎 𝑥) 𝜆𝑦. 𝑦

(𝜆𝑎. 𝑎 𝑥) 𝑎 →𝛼 (𝜆𝑦. 𝑦 𝑥) 𝑎

(𝜆𝑥. 𝑎 𝑥) 𝜆𝑎. 𝑎 𝑥 →𝛼 (𝜆𝑥. 𝑎 𝑥) 𝜆𝑧. 𝑧 𝑥

→𝛼 (𝜆𝑦. 𝑎 𝑦) 𝜆𝑧. 𝑧 𝑥

14.3 Encoding Data

Lambda calculus consists solely of variables and functions, and we can apply 𝛽-reduction to substitute functions for
variables. However, none of the familiar values exist directly in 𝜆-calculus, such as integers or booleans. It is thus
surprising that 𝜆-calculus can model any computational process. We demonstrate this by encoding values as functions.

1 Our convention is to 𝛼-reduce the argument rather than the function, though the result of evaluation would be equivalent in either case.

14.3. Encoding Data 124

Programming Language Principles and Paradigms, Release 0.4

14.3.1 Booleans

To start with, let us define an abstraction for the booleans 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒. The only building block we have to work
with is functions, and we need to ensure that the functions that represent the two values are not 𝛽-equivalent so that we
can distinguish between them. There are many ways we can do so, but the one we use is to define 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 as
functions that take two values and produce either the first or the second value:

𝑡𝑟𝑢𝑒 = 𝜆𝑡. 𝜆𝑓. 𝑡

𝑓𝑎𝑙𝑠𝑒 = 𝜆𝑡. 𝜆𝑓. 𝑓

The = sign here means that we take this as a mathematical definition; it does not denote assignment. Since all functions
in 𝜆-calculus must take a single argument, the actual definitions of 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 are curried. Applying 𝑡𝑟𝑢𝑒 to two
values results in the first:

𝑡𝑟𝑢𝑒 𝑎 𝑏 = (𝜆𝑡. 𝜆𝑓. 𝑡) 𝑎 𝑏

→𝛽 (𝜆𝑓. 𝑎) 𝑏

→𝛽 𝑎

Similarly, applying 𝑓𝑎𝑙𝑠𝑒 to two values yields the second:

𝑓𝑎𝑙𝑠𝑒 𝑎 𝑏 = (𝜆𝑡. 𝜆𝑓. 𝑓) 𝑎 𝑏

→𝛽 (𝜆𝑓. 𝑓) 𝑏

→𝛽 𝑏

We can proceed to define logical operators as follows:

𝑎𝑛𝑑 = 𝜆𝑎. 𝜆𝑏. 𝑎 𝑏 𝑎

𝑜𝑟 = 𝜆𝑎. 𝜆𝑏. 𝑎 𝑎 𝑏

𝑛𝑜𝑡 = 𝜆𝑏. 𝑏 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒

To see how these work, let us apply them to some examples:

𝑎𝑛𝑑 𝑡𝑟𝑢𝑒 𝑏𝑜𝑜𝑙 = ((𝜆𝑎. 𝜆𝑏. 𝑎 𝑏 𝑎) 𝑡𝑟𝑢𝑒) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑡𝑟𝑢𝑒 𝑏 𝑡𝑟𝑢𝑒) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑏) 𝑏𝑜𝑜𝑙

→ 𝑏𝑜𝑜𝑙

𝑜𝑟 𝑡𝑟𝑢𝑒 𝑏𝑜𝑜𝑙 = ((𝜆𝑎. 𝜆𝑏. 𝑎 𝑎 𝑏) 𝑡𝑟𝑢𝑒) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑏) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑡𝑟𝑢𝑒) 𝑏𝑜𝑜𝑙

→ 𝑡𝑟𝑢𝑒

Here, we use → on its own to denote some sequence of 𝛼- and 𝛽-reductions. Applying 𝑎𝑛𝑑 to 𝑡𝑟𝑢𝑒 and any other
boolean results in the second boolean, while applying 𝑜𝑟 to 𝑡𝑟𝑢𝑒 and another boolean always results in 𝑡𝑟𝑢𝑒. Similarly:

𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑏𝑜𝑜𝑙 = ((𝜆𝑎. 𝜆𝑏. 𝑎 𝑏 𝑎) 𝑓𝑎𝑙𝑠𝑒) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑓𝑎𝑙𝑠𝑒 𝑏 𝑓𝑎𝑙𝑠𝑒) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑓𝑎𝑙𝑠𝑒) 𝑏𝑜𝑜𝑙

→ 𝑓𝑎𝑙𝑠𝑒

𝑜𝑟 𝑓𝑎𝑙𝑠𝑒 𝑏𝑜𝑜𝑙 = ((𝜆𝑎. 𝜆𝑏. 𝑎 𝑎 𝑏) 𝑓𝑎𝑙𝑠𝑒) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑏) 𝑏𝑜𝑜𝑙

→ (𝜆𝑏. 𝑏) 𝑏𝑜𝑜𝑙

→ 𝑏𝑜𝑜𝑙

14.3. Encoding Data 125

Programming Language Principles and Paradigms, Release 0.4

Applying 𝑎𝑛𝑑 to 𝑓𝑎𝑙𝑠𝑒 and some other boolean always results in 𝑓𝑎𝑙𝑠𝑒, while applying 𝑜𝑟 to 𝑓𝑎𝑙𝑠𝑒 and another boolean
results in the second boolean. Finally, 𝑛𝑜𝑡 works as follows:

𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 = (𝜆𝑏. 𝑏 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒) 𝑡𝑟𝑢𝑒

→ 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒

→ 𝑓𝑎𝑙𝑠𝑒

𝑛𝑜𝑡 𝑓𝑎𝑙𝑠𝑒 = (𝜆𝑏. 𝑏 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒) 𝑓𝑎𝑙𝑠𝑒

→ 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒

→ 𝑡𝑟𝑢𝑒

Applying 𝑛𝑜𝑡 to 𝑡𝑟𝑢𝑒 results in 𝑓𝑎𝑙𝑠𝑒, and vice versa.

We can define a conditional as follows:

𝑖𝑓 = 𝜆𝑝. 𝜆𝑎. 𝜆𝑏. 𝑝 𝑎 𝑏

If the condition 𝑝 is 𝑡𝑟𝑢𝑒, then applying 𝑝 to 𝑎 and 𝑏 results in 𝑎, since 𝑡𝑟𝑢𝑒 selects the first of two values. On the other
hand, if 𝑝 is 𝑓𝑎𝑙𝑠𝑒, then applying 𝑝 to 𝑎 and 𝑏 results in 𝑏, since 𝑓𝑎𝑙𝑠𝑒 selects the second of two values.

14.3.2 Pairs

In order to represent structured data, we need an abstraction for a pair of two values. As with booleans, the only
mechanism at our disposal is functions, so we need to produce a “container” function that holds the two values within
its body.:

𝑝𝑎𝑖𝑟 = 𝜆𝑥. 𝜆𝑦. 𝜆𝑓. 𝑓 𝑥 𝑦

The 𝑝𝑎𝑖𝑟 constructor takes two items 𝑥 and 𝑦 and produces as a result a function that contains 𝑥 and 𝑦 in its body.
Applying 𝑝𝑎𝑖𝑟 to two concrete items 𝑎 and 𝑏 results in:

𝑝𝑎𝑖𝑟 𝑎 𝑏 = (𝜆𝑥. 𝜆𝑦. 𝜆𝑓. 𝑓 𝑥 𝑦) 𝑎 𝑏)

→𝛽 (𝜆𝑦. 𝜆𝑓. 𝑓 𝑎 𝑦) 𝑏

→𝛽 𝜆𝑓. 𝑓 𝑎 𝑏

In order to obtain the first item 𝑎 above, we can substitute 𝑡𝑟𝑢𝑒 for 𝑓 , so that 𝑓 𝑎 𝑏 evaluates to 𝑎. Similarly, to obtain the
second item, we can substitute 𝑓𝑎𝑙𝑠𝑒 for 𝑓 . This leads to the following definitions of the 𝑓𝑖𝑟𝑠𝑡 and 𝑠𝑒𝑐𝑜𝑛𝑑 selectors:

𝑓𝑖𝑟𝑠𝑡 = 𝜆𝑝. 𝑝 𝑡𝑟𝑢𝑒

𝑠𝑒𝑐𝑜𝑛𝑑 = 𝜆𝑝. 𝑝 𝑓𝑎𝑙𝑠𝑒

The following demonstrates how selectors work:

𝑓𝑖𝑟𝑠𝑡 (𝑝𝑎𝑖𝑟 𝑎 𝑏) = (𝜆𝑝. 𝑝 𝑡𝑟𝑢𝑒) (𝑝𝑎𝑖𝑟 𝑎 𝑏)

→ (𝑝𝑎𝑖𝑟 𝑎 𝑏) 𝑡𝑟𝑢𝑒

= (𝜆𝑓. 𝑓 𝑎 𝑏) 𝑡𝑟𝑢𝑒

→ 𝑡𝑟𝑢𝑒 𝑎 𝑏

→ 𝑎

𝑠𝑒𝑐𝑜𝑛𝑑 (𝑝𝑎𝑖𝑟 𝑎 𝑏) = (𝜆𝑝. 𝑝 𝑓𝑎𝑙𝑠𝑒) (𝑝𝑎𝑖𝑟 𝑎 𝑏)

→ (𝑝𝑎𝑖𝑟 𝑎 𝑏) 𝑓𝑎𝑙𝑠𝑒

= (𝜆𝑓. 𝑓 𝑎 𝑏) 𝑓𝑎𝑙𝑠𝑒

→ 𝑓𝑎𝑙𝑠𝑒 𝑎 𝑏

→ 𝑏

14.3. Encoding Data 126

Programming Language Principles and Paradigms, Release 0.4

We can also define a representation for 𝑛𝑖𝑙, as well as a predicate to test for 𝑛𝑖𝑙:

𝑛𝑖𝑙 = 𝜆𝑥. 𝑡𝑟𝑢𝑒

𝑛𝑢𝑙𝑙 = 𝜆𝑝. 𝑝 (𝜆𝑥. 𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒)

Let us see how the 𝑛𝑢𝑙𝑙 predicate works:

𝑛𝑢𝑙𝑙 𝑛𝑖𝑙 = (𝜆𝑝. 𝑝 (𝜆𝑥. 𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒)) 𝜆𝑥. 𝑡𝑟𝑢𝑒

→ (𝜆𝑥. 𝑡𝑟𝑢𝑒) (𝜆𝑥. 𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒)

→ 𝑡𝑟𝑢𝑒

𝑛𝑢𝑙𝑙 (𝑝𝑎𝑖𝑟 𝑎 𝑏) = (𝜆𝑝. 𝑝 (𝜆𝑥. 𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒)) (𝑝𝑎𝑖𝑟 𝑎 𝑏)

→ (𝑝𝑎𝑖𝑟 𝑎 𝑏) (𝜆𝑥. 𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒)

= (𝜆𝑓. 𝑓 𝑎 𝑏) (𝜆𝑥. 𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒)

→ (𝜆𝑥. 𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑎 𝑏

→ (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑏

→ 𝑓𝑎𝑙𝑠𝑒

With a definition for pairs, we can represent arbitrary data structures. For example, we can represent trees using nested
pairs:

𝑡𝑟𝑒𝑒 = 𝜆𝑑. 𝜆𝑙. 𝜆𝑟. 𝑝𝑎𝑖𝑟 𝑑 (𝑝𝑎𝑖𝑟 𝑙 𝑟)

𝑑𝑎𝑡𝑢𝑚 = 𝜆𝑡. 𝑓𝑖𝑟𝑠𝑡 𝑡

𝑙𝑒𝑓𝑡 = 𝜆𝑡. 𝑓𝑖𝑟𝑠𝑡 (𝑠𝑒𝑐𝑜𝑛𝑑 𝑡)

𝑟𝑖𝑔ℎ𝑡 = 𝜆𝑡. 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑠𝑒𝑐𝑜𝑛𝑑 𝑡)

14.3.3 Church Numerals

Many representations of numbers are possible in 𝜆-calculus. For example, we can represent natural numbers in unary
format, using pairs:

𝑧𝑒𝑟𝑜 = 𝜆𝑥. 𝑛𝑖𝑙

𝑜𝑛𝑒 = 𝜆𝑥. 𝑝𝑎𝑖𝑟 𝑥 𝑛𝑖𝑙

𝑡𝑤𝑜 = 𝜆𝑥. 𝑝𝑎𝑖𝑟 𝑥 (𝑝𝑎𝑖𝑟 𝑥 𝑛𝑖𝑙)

. . .

However, the most common representation is the Church numerals, which represents a natural number by how many
times it applies a function to an input:

𝑧𝑒𝑟𝑜 = 𝜆𝑓. 𝜆𝑥. 𝑥

𝑜𝑛𝑒 = 𝜆𝑓. 𝜆𝑥. 𝑓 𝑥

𝑡𝑤𝑜 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥)

𝑡ℎ𝑟𝑒𝑒 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 (𝑓 𝑥))

. . .

A number 𝑛 is a higher-order function that, given another function 𝑓 , produces a new function that applies 𝑓 to its
argument 𝑛 times in succession. Using the mathematical notation 𝑓𝑘 to denote the composition of 𝑓 with itself 𝑘
times, e.g 𝑓3 = 𝑓 ∘ 𝑓 ∘ 𝑓 , the Church numeral 𝑛 is a function that takes 𝑓 and produces 𝑓𝑛.

As a concrete example, the 𝑟𝑖𝑔ℎ𝑡 function above applies the 𝑠𝑒𝑐𝑜𝑛𝑑 function twice to its argument, so we can define it
instead as:

𝑟𝑖𝑔ℎ𝑡 = 𝑡𝑤𝑜 𝑠𝑒𝑐𝑜𝑛𝑑

14.3. Encoding Data 127

Programming Language Principles and Paradigms, Release 0.4

The following demonstrates how this works2:

𝑟𝑖𝑔ℎ𝑡 (𝑡𝑟𝑒𝑒 𝑎 𝑏 𝑐) = 𝑟𝑖𝑔ℎ𝑡 (𝑝𝑎𝑖𝑟 𝑎 (𝑝𝑎𝑖𝑟 𝑏 𝑐))

= (𝑡𝑤𝑜 𝑠𝑒𝑐𝑜𝑛𝑑) (𝑝𝑎𝑖𝑟 𝑎 (𝑝𝑎𝑖𝑟 𝑏 𝑐))

= ((𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥)) 𝑠𝑒𝑐𝑜𝑛𝑑) (𝑝𝑎𝑖𝑟 𝑎 (𝑝𝑎𝑖𝑟 𝑏 𝑐))

→ (𝜆𝑥. 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑠𝑒𝑐𝑜𝑛𝑑 𝑥)) (𝑝𝑎𝑖𝑟 𝑎 (𝑝𝑎𝑖𝑟 𝑏 𝑐))

→ 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑠𝑒𝑐𝑜𝑛𝑑 (𝑝𝑎𝑖𝑟 𝑎 (𝑝𝑎𝑖𝑟 𝑏 𝑐)))

→ 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑝𝑎𝑖𝑟 𝑏 𝑐)

→ 𝑐

By applying 𝑟𝑖𝑔ℎ𝑡 to a tree with 𝑐 as its right subtree, we obtain 𝑐.

We can define an increment function as follows:

𝑖𝑛𝑐𝑟 = 𝜆𝑛. 𝜆𝑓. 𝜆𝑦. 𝑓 (𝑛 𝑓 𝑦)

Given a number, 𝑖𝑛𝑐𝑟 produces a new one that applies a function to an argument one more time than the original
number. Thus, where 𝑛 turns its input 𝑓 into 𝑓𝑛, the result of 𝑖𝑛𝑐𝑟 𝑛 turns its input 𝑓 into 𝑓𝑛+1. This is accomplished
by first applying 𝑛 𝑓 , which is equivalent to 𝑓𝑛, and then applying 𝑓 one more time. For example:

𝑖𝑛𝑐𝑟 𝑧𝑒𝑟𝑜 = (𝜆𝑛. 𝜆𝑓. 𝜆𝑦. 𝑓 (𝑛 𝑓 𝑦)) 𝑧𝑒𝑟𝑜

→ 𝜆𝑓. 𝜆𝑦. 𝑓 (𝑧𝑒𝑟𝑜 𝑓 𝑦)

= 𝜆𝑓. 𝜆𝑦. 𝑓 ((𝜆𝑥. 𝑥) 𝑦)

→ 𝜆𝑓. 𝜆𝑦. 𝑓 𝑦

=𝛼 𝑜𝑛𝑒

𝑖𝑛𝑐𝑟 𝑜𝑛𝑒 = (𝜆𝑛. 𝜆𝑓. 𝜆𝑦. 𝑓 (𝑛 𝑓 𝑦)) 𝑜𝑛𝑒

→ 𝜆𝑓. 𝜆𝑦. 𝑓 (𝑜𝑛𝑒 𝑓 𝑦)

= 𝜆𝑓. 𝜆𝑦. 𝑓 ((𝜆𝑥. 𝑓 𝑥) 𝑦)

→ 𝜆𝑓. 𝜆𝑦. 𝑓 (𝑓 𝑦)

=𝛼 𝑡𝑤𝑜

We can then define 𝑝𝑙𝑢𝑠 as follows:

𝑝𝑙𝑢𝑠 = 𝜆𝑚. 𝜆𝑛. 𝑚 𝑖𝑛𝑐𝑟 𝑛

This applies the 𝑖𝑛𝑐𝑟 function 𝑚 times to 𝑛. For example:

𝑝𝑙𝑢𝑠 𝑡𝑤𝑜 𝑡ℎ𝑟𝑒𝑒 = (𝜆𝑚. 𝜆𝑛. 𝑚 𝑖𝑛𝑐𝑟 𝑛) 𝑡𝑤𝑜 𝑡ℎ𝑟𝑒𝑒

→ (𝜆𝑛. 𝑡𝑤𝑜 𝑖𝑛𝑐𝑟 𝑛) 𝑡ℎ𝑟𝑒𝑒

= (𝜆𝑛. (𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥)) 𝑖𝑛𝑐𝑟 𝑛) 𝑡ℎ𝑟𝑒𝑒

→ (𝜆𝑛. (𝜆𝑥. 𝑖𝑛𝑐𝑟 (𝑖𝑛𝑐𝑟 𝑥)) 𝑛) 𝑡ℎ𝑟𝑒𝑒

→ (𝜆𝑛. 𝑖𝑛𝑐𝑟 (𝑖𝑛𝑐𝑟 𝑛)) 𝑡ℎ𝑟𝑒𝑒

→ 𝑖𝑛𝑐𝑟 (𝑖𝑛𝑐𝑟 𝑡ℎ𝑟𝑒𝑒)

→ 𝑖𝑛𝑐𝑟 𝑓𝑜𝑢𝑟

→ 𝑓𝑖𝑣𝑒

We can then use the same strategy to define multiplication:

𝑡𝑖𝑚𝑒𝑠 = 𝜆𝑚. 𝜆𝑛. 𝑚 (𝑝𝑙𝑢𝑠 𝑛) 𝑧𝑒𝑟𝑜

2 To simplify reasoning about the results, we depart from normal-order evaluation for the remainder of our discussion on 𝜆-calculus when
reducing expressions. In particular, we do not reduce a function body before applying it. However, applying the resulting expressions would have
the same effect as those generated by normal-order evaluation.

14.3. Encoding Data 128

Programming Language Principles and Paradigms, Release 0.4

Here, we perform 𝑚 additions of 𝑛, starting at zero, resulting in the product of 𝑚 and 𝑛.

We can define exponentiation using the same pattern. Decrement and subtraction are a little more difficult to define,
but are possible. Finally, we need a predicate to determine when a number is zero:

𝑖𝑠𝑧𝑒𝑟𝑜 = 𝜆𝑛. 𝑛 (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒

We apply a number to a function that returns 𝑓𝑎𝑙𝑠𝑒 and a starting value of 𝑡𝑟𝑢𝑒. Only if the function is never applied
is the result 𝑡𝑟𝑢𝑒, otherwise it is 𝑓𝑎𝑙𝑠𝑒:

𝑖𝑠𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 = (𝜆𝑛. 𝑛 (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒) 𝑧𝑒𝑟𝑜

→ 𝑧𝑒𝑟𝑜 (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒

= (𝜆𝑓. 𝜆𝑥. 𝑥) (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒

→ (𝜆𝑥. 𝑥) 𝑡𝑟𝑢𝑒

→ 𝑡𝑟𝑢𝑒

𝑖𝑠𝑧𝑒𝑟𝑜 𝑡𝑤𝑜 = (𝜆𝑛. 𝑛 (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒) 𝑡𝑤𝑜

→ 𝑡𝑤𝑜 (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒

= (𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥)) (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒

→ (𝜆𝑥. (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) ((𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑥)) 𝑡𝑟𝑢𝑒

→ (𝜆𝑥. (𝜆𝑦. 𝑓𝑎𝑙𝑠𝑒) 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒

→ (𝜆𝑥. 𝑓𝑎𝑙𝑠𝑒) 𝑡𝑟𝑢𝑒

→ 𝑓𝑎𝑙𝑠𝑒

14.4 Recursion

Church numerals allow us to perform bounded repetition, but in order to express arbitrary computation, we need a
mechanism for unbounded repetition. Since 𝜆-calculus only has functions, recursion is a natural mechanism for repe-
tition.

In recursion, a function needs to be able to refer to itself by name. However, in 𝜆-calculus, the only way to introduce a
name is as a function parameter. Thus, a recursive function must take itself as input. For example, the following defines
a factorial function:

𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 = 𝜆𝑓. 𝜆𝑛. 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑛) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑛 (𝑓 𝑓 (𝑑𝑒𝑐𝑟 𝑛)))

As an analogy, the equivalent form in Python is as follows:

>>> factorial = lambda f: (lambda n: 1 if n == 0 else n * f(f)(n-1))

In order to actually apply the 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 function, we need another function that applies its argument to itself:

𝑎𝑝𝑝𝑙𝑦 = 𝜆𝑔. 𝑔 𝑔

We can then compute a factorial as follows:

𝑎𝑝𝑝𝑙𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑚 = (𝜆𝑔. 𝑔 𝑔) 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑚

→ 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑚

= (𝜆𝑓. 𝜆𝑛. 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑛) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑛 (𝑓 𝑓 (𝑑𝑒𝑐𝑟 𝑛)))) 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑚

→ (𝜆𝑛. 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑛) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑛 (𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 (𝑑𝑒𝑐𝑟 𝑛))))𝑚

→ 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑚) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑚 (𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 (𝑑𝑒𝑐𝑟 𝑚)))

=𝛽 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑚) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑚 (𝑎𝑝𝑝𝑙𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 (𝑑𝑒𝑐𝑟 𝑚)))

. . .

14.4. Recursion 129

Programming Language Principles and Paradigms, Release 0.4

Further evaluation results in the factorial of 𝑚. Performing the analogous operation in Python:

>>> apply = lambda g: g(g)
>>> apply(factorial)(4)
24

The 𝑎𝑝𝑝𝑙𝑦 function can be generalized as the following function in 𝜆-calculus, known as a fixed-point combinator and,
by convention, the Y combinator:

𝑌 = 𝜆𝑓. (𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥))

Applying the Y combinator to a function 𝐹 results in:

𝑌 𝐹 = (𝜆𝑓. (𝜆𝑥. 𝑓 (𝑥 𝑥)) (𝜆𝑥. 𝑓 (𝑥 𝑥))) 𝐹

→ (𝜆𝑥. 𝐹 (𝑥 𝑥)) (𝜆𝑥. 𝐹 (𝑥 𝑥))

→ (𝜆𝑥. 𝐹 (𝑥 𝑥)) (𝜆𝑦. 𝐹 (𝑦 𝑦))

→ 𝐹 ((𝜆𝑦. 𝐹 (𝑦 𝑦)) (𝜆𝑦. 𝐹 (𝑦 𝑦)))

= 𝐹 (𝑌 𝐹)

This allows us to define 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 more simply. Let us first define a concrete function 𝐹 :

𝐹 = 𝜆𝑓. 𝜆𝑛. 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑛) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑛 (𝑓 (𝑑𝑒𝑐𝑟 𝑛)))

Notice that this is the same as 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙, except that we have not passed the input function to itself in the recursive
application. If we apply the Y combinator to 𝐹 and apply the result to a number, we get:

𝑌 𝐹 𝑚 → 𝐹 (𝑌 𝐹)𝑚

= (𝜆𝑓. 𝜆𝑛. 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑛) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑛 (𝑓 (𝑑𝑒𝑐𝑟 𝑛)))) (𝑌 𝐹)𝑚

→ (𝜆𝑛. 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑛) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑛 ((𝑌 𝐹) (𝑑𝑒𝑐𝑟 𝑛))))𝑚

→ 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑚) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑚 ((𝑌 𝐹) (𝑑𝑒𝑐𝑟 𝑚)))

Letting 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 = 𝑌 𝐹 , we get

𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑚 → 𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑚) 𝑜𝑛𝑒 (𝑡𝑖𝑚𝑒𝑠 𝑚 (𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 (𝑑𝑒𝑐𝑟 𝑚)))

Thus, we see that applying the Y combinator to 𝐹 results in a recursive 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 function, and the Y combinator
enables us to write recursive functions in a simpler manner.

14.5 Equivalent Models

Lambda calculus models functional programming in its simplest and purest form, and its ability to encode data and per-
form recursion demonstrates the power of functional programming. It is not the only model for computation, however.
Perhaps the most famous model is the Turing machine, described by Alan Turing around the same time as Church’s
work on 𝜆-calculus. The Turing model is imperative at its core, and it is more closely related to the workings of modern
machines than 𝜆-calculus.

Many variants of Turing machines have been defined, but the following is a description of one variant:

• A tape device is used for storage, divided into individual cells in a linear layout. Each cell contains a symbol
from a finite alphabet. The tape extends infinitely in both left and right directions.

• A head reads and writes symbols from the tape. It can be moved one step at a time to the right or left.

• A state register keeps track of the state of the machine. There are a finite number of states the machine can be
in, including special start and halt states.

14.5. Equivalent Models 130

Programming Language Principles and Paradigms, Release 0.4

··· a0 a2 a1 a1 a0 ···

S1

State Register

Tape

Head

a0 a1 a2

s0
write a2
move head right
goto s1

write a0
move head left
goto s0

write a1
move head right
goto s1

s1 halt
write a2
move head left
goto s0

write a2
move head left
goto s1

Table

symbol under head

cu
rre

nt
 st

at
e

Figure 14.1: An example of a Turing machine.

• A table of instructions specifies what the machine is to do for each combination of state and symbol. Since the
sets of states and symbols are finite, the instruction table is also finite. At each step in the computation, the
machine looks up the current state and the symbol currently under the head in the table and follows the specified
instruction.

• An instruction can either halt the machine, ending computation, or do the following:

– Write a specific symbol at the current position of the head.

– Move the head either one step to the left or the right.

– Go to a specified new state.

Analogizing with imperative programming, each instruction in a Turing machine can be considered a statement, and
each statement transfers control to a new one in a manner similar to a goto.

Despite the vastly different model of computation, Alan Turing proved that a Turing machine can solve exactly the same
problems as 𝜆-calculus. This suggests that both models encompass all of computation, a conjecture formalized in the
Church-Turing thesis. The thesis states that a function is computable by a human following an algorithm if and only if
it is computable by a Turing machine, or equivalently, an expression in 𝜆-calculus.

All known models of computation have been shown to be either computationally equivalent to or weaker than Tur-
ing machines. Equivalent models are said to be Turing complete. A programming language also defines a model of
computation, and all general-purpose programming languages are Turing complete, whether they follow a functional
paradigm, an imperative one, or an alternative approach.

14.5. Equivalent Models 131

CHAPTER

FIFTEEN

OPERATIONAL SEMANTICS

As mentioned previously, semantics is concerned with the meaning of code fragments, as opposed to syntax, which
is concerned with their structure. We have seen that syntax can be formally described with regular expressions and
context-free grammars. Semantics can also be described formally, and there are a number of approaches. Denotational
semantics specifies program behavior using set and domain theory, with program fragments described as partial func-
tions over program state. Axiomatic semantics is concerned with proving logical assertions over program state, so it
specifies the meaning of each construct with respect to its effect on these logical assertions. Operational semantics
specifies what each computational step does to the state of a program, and what value is computed in each step. Opera-
tional semantics more closely describes what an interpreter for a language must perform for each step than denotational
or axiomatic semantics.

In this section, we will examine a form of operational semantics known as structured operational semantics, and more
specifically, natural or big-step semantics. This form of semantics is particularly well-suited to implementation in a
recursive interpreter. We specify rules for how the computation evolves for each syntactic construct in a programming
language. We will begin our exploration with a simple imperative language.

132

Programming Language Principles and Paradigms, Release 0.4

15.1 Language

Consider a simple imperative language with variables, integers, booleans, statements, conditionals, and loops. The
following is a context-free grammar that describes this language:

𝑃 → 𝑆

𝑆 → skip
| 𝑆; 𝑆
| 𝑉 = 𝐴

| if 𝐵 then 𝑆 else 𝑆 end
| while 𝐵 do 𝑆 end

𝐴 → 𝑁

| 𝑉
| (𝐴 + 𝐴)

| (𝐴 − 𝐴)

| (𝐴 * 𝐴)

𝐵 → true
| false
| (𝐴 <= 𝐴)

| (𝐵 and 𝐵)

| not 𝐵
𝑉 → 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟

𝑁 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐿𝑖𝑡𝑒𝑟𝑎𝑙

In order to avoid ambiguities, arithmetic and boolean expressions are parenthesized where necessary, and conditionals
and loops end with the end keyword. The skip statement simply does nothing, and it is equivalent to the empty
statement in many languages. It allows us to write conditionals that do nothing in a branch. Variables consist of any
identifier, and we will use combinations of letters and numbers to denote them. Any integer can be used as a number
literal.

15.2 States and Transitions

The state of a program consists of a mapping from variables to values, and we will use the lowercase Greek sigma (𝜎)
to denote a state. In our simple language, variables only hold integer values, and the value of a variable 𝑣 is specified
as 𝜎(𝑣). In the initial state, the value of each variable is undefined. We use the notation

𝜎[𝑣 := 𝑛]

to denote a state where the value of the variable 𝑣 has value 𝑛, but the remaining variables have the same value as in
𝜎. Formally, we have

𝜎[𝑣 := 𝑛](𝑤) =

{︃
𝑛, if 𝑣 = 𝑤

𝜎(𝑤), if 𝑣 ̸= 𝑤

A transition denotes the result of a computation:

⟨𝑠, 𝜎⟩ ⇓ ⟨𝑢, 𝜎′⟩

The left-hand side is the combination of a program fragment 𝑠 and an initial state 𝜎. The right-hand side consists of a
value 𝑢 and a new state 𝜎. The transition as a whole denotes that 𝑠, when computed in the context of state 𝜎, results in

15.1. Language 133

Programming Language Principles and Paradigms, Release 0.4

the value 𝑢 and a new state 𝜎′. If the computation does not produce a value, then no value appears on the right-hand
side:

⟨𝑠, 𝜎⟩ ⇓ 𝜎′

Similarly, if the computation does not result in a new state, then the state may be elided from the right-hand side:

⟨𝑠, 𝜎⟩ ⇓ 𝑢

In big-step operational semantics, a transition may only result in a value and/or state. Program fragments may not
appear on the right-hand side of a transition. Thus, a transition specifies the complete result of computing a program
fragment.

We specify computation in the form of transition rules, also called derivation rules. They have the following general
form:

⟨𝑠1, 𝜎1⟩ ⇓ ⟨𝑢1, 𝜎
′
1⟩ . . . ⟨𝑠𝑘, 𝜎𝑘⟩ ⇓ ⟨𝑢𝑘, 𝜎

′
𝑘⟩

⟨𝑠, 𝜎⟩ ⇓ ⟨𝑢, 𝜎′⟩

Only transitions may appear at the top or bottom of a rule. The top of a rule is called the premise, and the bottom the
conclusion. It should thus be read as a conditional rule: if program fragment 𝑠1, when computed in state 𝜎1, evaluates
to value 𝑢1 in state 𝜎′

1, . . ., and 𝑠𝑘, when computed in state 𝜎𝑘, evaluates to 𝑢𝑘 in state 𝜎′
𝑘, then fragment 𝑠 in state

𝜎 can evaluate to 𝑢 in state 𝜎′. If a computation does not affect the state of the program, then the state may be elided
from the right-hand side of a transition. Similarly, if a computation does not result in a value, as in the execution of a
statement, then the right-hand side of a transition will not include a value.

A transition rule prescribes how to perform a computation in an interpreter. A particular program fragment 𝑝 can be
interpreted by finding a transition rule where 𝑝 appears in the conclusion and performing the computations listed in the
premise of the rule. The results of these smaller computations are then combined as specified in the rule to produce the
result of program fragment 𝑝. If more than one rule has 𝑝 in its conclusion, then the interpreter is free to chose which
of the rules to apply. Each computational step in a program applies a transition rule, and a program terminates when
no more transition rules can be applied.

15.3 Expressions

Expressions are generally used for the values to which they evaluate, and in our language, expressions do not have side
effects. As a result, the right-hand side of transitions will not include a new state in most of the rules we define below.

15.3.1 Arithmetic Expressions

An integer literal evaluates to the respective integer in all cases. The transition rule is as follows, where 𝑛 denotes an
arbitrary integer:

⟨𝑛, 𝜎⟩ ⇓ 𝑛

A rule like this, with an empty premise, is called an axiom. Axioms are the starting point of computation, as we will
see below.

A variable, denoted by 𝑣 below, evaluates to its value as tracked by the state:

⟨𝑣, 𝜎⟩ ⇓ 𝜎(𝑣)

15.3. Expressions 134

Programming Language Principles and Paradigms, Release 0.4

The rules for addition, subtraction, and multiplication are as follows:

⟨𝑎1, 𝜎⟩ ⇓ 𝑛1 ⟨𝑎2, 𝜎⟩ ⇓ 𝑛2

⟨(𝑎1 + 𝑎2), 𝜎⟩ ⇓ 𝑛
where 𝑛 = 𝑛1 + 𝑛2

⟨𝑎1, 𝜎⟩ ⇓ 𝑛1 ⟨𝑎2, 𝜎⟩ ⇓ 𝑛2

⟨(𝑎1 − 𝑎2), 𝜎⟩ ⇓ 𝑛
where 𝑛 = 𝑛1 − 𝑛2

⟨𝑎1, 𝜎⟩ ⇓ 𝑛1 ⟨𝑎2, 𝜎⟩ ⇓ 𝑛2

⟨(𝑎1 * 𝑎2), 𝜎⟩ ⇓ 𝑛
where 𝑛 = 𝑛1 × 𝑛2

In evaluating (𝑎1 + 𝑎2) in state 𝜎, if 𝑎1 evaluates to 𝑛1 in 𝜎 and 𝑎2 to 𝑛2, then (𝑎1 + 𝑎2) evaluates to the sum of 𝑛1

and 𝑛2. Similarly for subtraction and multiplication.

The process of evaluating a compound expression results in a derivation tree starting with axioms. For example,
consider the evaluation of ((𝑥 + 3) * (𝑦 − 5)), where 𝑥 and 𝑦 are variables with values 1 and 2, respectively, in state
𝜎. The full derivation tree is as follows:

⟨𝑥, 𝜎⟩ ⇓ 1 ⟨3, 𝜎⟩ ⇓ 3

⟨(𝑥+ 3), 𝜎⟩ ⇓ 4

⟨𝑦, 𝜎⟩ ⇓ 2 ⟨5, 𝜎⟩ ⇓ 5

⟨(𝑦 − 5), 𝜎⟩ ⇓ −3

⟨((𝑥+ 3) * (𝑦 − 5)), 𝜎⟩ ⇓ −12

In this tree, we’ve applied transition rules to each subexpression to get from axioms to the conclusion that ((𝑥 + 3) *
(𝑦 − 5)) evaluates to -12 in 𝜎.

The tree above demonstrates how computation could proceed in an interpreter. The program fragment ((𝑥+3)*(𝑦−5))
has the form (𝑎1*𝑎2), where 𝑎1 = (𝑥+3) and 𝑎2 = (𝑦−5). The interpreter would thus apply the rule for multiplication,
which in turn requires computing (𝑥 + 3) and (𝑦 − 5). The former has the form (𝑎1 + 𝑎2), so the interpreter would
apply the rule for addition, which itself requires the computation of 𝑥 and 3. The former is a variable, so applying
the rule for a variable results in the value 1, while the latter is an integer literal, which evaluates to the value 3 that it
represents. Thus, the addition (𝑥+ 3) evaluates to the value 4. Repeating the same process for the expression (𝑦 − 5)
results in the value −3, so the full program fragment evaluates to −12.

15.3.2 Order of Evaluation

If expressions may have side effects, then transitions must include a new state, and we need to consider the order of
evaluation of operands. The following rule specifies that the left-hand operand of an addition must be evaluated before
the right-hand operand:

⟨𝑎1, 𝜎⟩ ⇓ ⟨𝑛1, 𝜎1⟩ ⟨𝑎2, 𝜎1⟩ ⇓ ⟨𝑛2, 𝜎2⟩
⟨(𝑎1 + 𝑎2), 𝜎⟩ ⇓ ⟨𝑛, 𝜎2⟩

where 𝑛 = 𝑛1 + 𝑛2

In this rule, we’ve specified that the first operand is to be evaluated in the original state, while the second operand is
to be evaluated in the new state produced by evaluating the first operand. The final state is the new state produced by
evaluating the second operand.

If, on the other hand, we choose to allow operands to be evaluated in either order, but require that they be evaluated in
some order, we can introduce a second rule for addition that enables the evaluation to done in reverse order:

⟨𝑎2, 𝜎⟩ ⇓ ⟨𝑛2, 𝜎2⟩ ⟨𝑎1, 𝜎2⟩ ⇓ ⟨𝑛1, 𝜎1⟩
⟨(𝑎1 + 𝑎2), 𝜎⟩ ⇓ ⟨𝑛, 𝜎1⟩

where 𝑛 = 𝑛1 + 𝑛2

Now, in evaluating (𝑎1+𝑎2), we can apply either rule to get either order of evaluation. Thus, implementations are now
free to evaluate operands in either order.

15.3. Expressions 135

Programming Language Principles and Paradigms, Release 0.4

15.3.3 Boolean Expressions

There are two axioms corresponding to boolean expressions:

⟨true, 𝜎⟩ ⇓ true

⟨false, 𝜎⟩ ⇓ false

The following are the rules for comparisons, assuming that expressions have no side effects:

⟨𝑎1, 𝜎⟩ ⇓ 𝑛1 ⟨𝑎2, 𝜎⟩ ⇓ 𝑛2

⟨(𝑎1 <= 𝑎2), 𝜎⟩ ⇓ true
if 𝑛1 ≤ 𝑛2

⟨𝑎1, 𝜎⟩ ⇓ 𝑛1 ⟨𝑎2, 𝜎⟩ ⇓ 𝑛2

⟨(𝑎1 <= 𝑎2), 𝜎⟩ ⇓ false
if 𝑛1 > 𝑛2

The rules for negation are as follows:

⟨𝑏, 𝜎⟩ ⇓ true
⟨not 𝑏, 𝜎⟩ ⇓ false

⟨𝑏, 𝜎⟩ ⇓ false
⟨not 𝑏, 𝜎⟩ ⇓ true

Conjunction can be specified as follows:

⟨𝑏1, 𝜎⟩ ⇓ 𝑡1 ⟨𝑏2, 𝜎⟩ ⇓ 𝑡2
⟨(𝑏1 and 𝑏2), 𝜎⟩ ⇓ 𝑡

where 𝑡 = 𝑡1 ∧ 𝑡2

Notice that this rule does not short circuit: it requires both operands of and to be evaluated. If we want short circuiting,
we can use the following rules for conjunction instead:

⟨𝑏1, 𝜎⟩ ⇓ false
⟨(𝑏1 and 𝑏2), 𝜎⟩ ⇓ false

⟨𝑏1, 𝜎⟩ ⇓ true ⟨𝑏2, 𝜎⟩ ⇓ 𝑡2
⟨(𝑏1 and 𝑏2), 𝜎⟩ ⇓ 𝑡2

Here, the right-hand side need only be evaluated when the left-hand side is true. An interpreter, upon encountering a
conjunction, would evaluate the left-hand operand. If the result is false, the first rule must be applied, but if it is true,
then the second rule must apply.

15.4 Statements

Statements in imperative programs are generally used for their side effects, so they change the state of the program. In
our language, statements do not have a value. In our transition rules below, the right-hand side of a transition will be a
new state, representing the state that results from completely executing the statement:

⟨𝑠, 𝜎⟩ ⇓ 𝜎′

The intended meaning of such a transition is that executing statement 𝑠 in state 𝜎 terminates in a new state 𝜎′. Not all
statements terminate; a statement that does not terminate will not yield a final state through any sequence of transition
rules.

15.4. Statements 136

Programming Language Principles and Paradigms, Release 0.4

The skip statement terminates with no effect on the state:

⟨skip, 𝜎⟩ ⇓ 𝜎

Assignment produces a new state such that the given variable now has the value of the given expression:

⟨𝑎, 𝜎⟩ ⇓ 𝑛

⟨𝑣 = 𝑎, 𝜎⟩ ⇓ 𝜎[𝑣 := 𝑛]

As described in States and Transitions, the notation 𝜎[𝑣 := 𝑛] denotes a state where variable 𝑣 has the value 𝑛, but all
other variables have the same value is in 𝜎. Thus, the assignment 𝑣 = 𝑎 produces a new state where 𝑣 has the value
that is the result of evaluating 𝑎, but the remaining variables are unchanged.

Sequencing ensures that the second statement executes in the new state produced from executing the first:

⟨𝑠1, 𝜎⟩ ⇓ 𝜎1 ⟨𝑠2, 𝜎1⟩ ⇓ 𝜎2

⟨𝑠1; 𝑠2, 𝜎⟩ ⇓ 𝜎2

Conditionals require separate rules for when the predicate is true or false:

⟨𝑏, 𝜎⟩ ⇓ true ⟨𝑠1, 𝜎⟩ ⇓ 𝜎1

⟨if 𝑏 then 𝑠1 else 𝑠2 end, 𝜎⟩ ⇓ 𝜎1

⟨𝑏, 𝜎⟩ ⇓ false ⟨𝑠2, 𝜎⟩ ⇓ 𝜎2

⟨if 𝑏 then 𝑠1 else 𝑠2 end, 𝜎⟩ ⇓ 𝜎2

If the test evaluates to true, then the first rule applies, executing the then statement. If the test is false, on the other hand,
the second rule applies, executing the else statement.

A loop whose predicate is false has no effect:

⟨𝑏, 𝜎⟩ ⇓ false
⟨while 𝑏 do 𝑠 end, 𝜎⟩ ⇓ 𝜎

On the other hand, a loop whose predicate is true has the same effect as executing the body and then recursively
executing the loop in the resulting state:

⟨𝑏, 𝜎⟩ ⇓ true ⟨𝑠, 𝜎⟩ ⇓ 𝜎1 ⟨while 𝑏 do 𝑠 end, 𝜎1⟩ ⇓ 𝜎2

⟨while 𝑏 do 𝑠 end, 𝜎⟩ ⇓ 𝜎2

The following demonstrates the execution of the terminating loop while (𝑥 <= 2) do 𝑥 = (𝑥+1) end, with 𝑥 having
an initial value of 1. Applying a single transition rule for while, along with fully evaluating the predicate and executing
one iteration of the body, yields:

⟨𝑥, 𝜎⟩ ⇓ 1 ⟨2, 𝜎⟩ ⇓ 2

⟨(𝑥 <= 2), 𝜎⟩ ⇓ true

⟨𝑥, 𝜎⟩ ⇓ 1 ⟨1, 𝜎⟩ ⇓ 1

⟨(𝑥+ 1), 𝜎⟩ ⇓ 2

⟨𝑥 = (𝑥+ 1), 𝜎⟩ ⇓ 𝜎[𝑥 := 2]
⟨while (𝑥 <= 2) do 𝑥 = (𝑥+ 1) end, 𝜎[𝑥 := 2]⟩ ⇓ 𝜎′

⟨while (𝑥 <= 2) do 𝑥 = (𝑥+ 1) end, 𝜎⟩ ⇓ 𝜎′

Recursively executing the while produces the following, where we’ve truncated the derivation tree for the predicate and
body:

⟨(𝑥 <= 2), 𝜎[𝑥 := 2]⟩ ⇓ true ⟨𝑥 = (𝑥+ 1), 𝜎[𝑥 := 2]⟩ ⇓ 𝜎[𝑥 := 3] ⟨while (𝑥 <= 2) do 𝑥 = (𝑥+ 1) end, 𝜎[𝑥 := 3]⟩ ⇓ 𝜎′

⟨while (𝑥 <= 2) do 𝑥 = (𝑥+ 1) end, 𝜎[𝑥 := 2]⟩ ⇓ 𝜎′

One more recursive execution results in:

⟨(𝑥 <= 2), 𝜎[𝑥 := 3]⟩ ⇓ false
⟨while (𝑥 <= 2) do 𝑥 = (𝑥+ 1) end, 𝜎[𝑥 := 3]⟩ ⇓ 𝜎[𝑥 := 3]

15.4. Statements 137

Programming Language Principles and Paradigms, Release 0.4

This implies that the final state is 𝜎′ = 𝜎[𝑥 := 3], so the result of the while loop is that 𝑥 now has value 3.

As an example of a non-terminating or divergent computation, consider the loop while true do skip end. Applying
the transition rule for while results in:

⟨true, 𝜎⟩ ⇓ true ⟨skip, 𝜎⟩ ⇓ 𝜎
⟨while true do skip end, 𝜎⟩ ⇓ 𝜎′

⟨while true do skip end, 𝜎⟩ ⇓ 𝜎′

In order to execute the while in the premise, we need to recursively apply the same transition rule, producing the same
result. This repeats forever, resulting in a divergent computation.

15.5 Examples

Operational semantics allows us to reason about the execution of programs, specify equivalences between program
fragments, and prove statements about programs. As an example, the following rule specifies an equivalence between
two forms of define in Scheme:

⟨(define 𝑓 (lambda (𝑝𝑎𝑟𝑎𝑚𝑠) 𝑏𝑜𝑑𝑦)), 𝜎⟩ ⇓ ⟨𝑢, 𝜎1⟩
⟨(define (𝑓 𝑝𝑎𝑟𝑎𝑚𝑠) 𝑏𝑜𝑑𝑦), 𝜎⟩ ⇓ ⟨𝑢, 𝜎1⟩

In Scheme, an expression produces a value but may also have side effects, so the right-hand side of a transition includes
a new state. The rule above states that if the expression (define 𝑓 (lambda (𝑝𝑎𝑟𝑎𝑚𝑠) 𝑏𝑜𝑑𝑦)) results in a particular
value and new state, then the expression (define (𝑓 𝑝𝑎𝑟𝑎𝑚𝑠) 𝑏𝑜𝑑𝑦) evaluates to the same value and new state. Thus, an
interpreter could handle the latter define form by translating it to the former and proceeding to evaluate the translated
form.

As another example, in our simple language above, we can demonstrate that swapping operands in an addition is a legal
transformation, since 𝑥+ 𝑦 and 𝑦 + 𝑥 always evaluate to the same value:

⟨𝑥, 𝜎⟩ ⇓ 𝑛𝑥 ⟨𝑦, 𝜎⟩ ⇓ 𝑛𝑦

⟨(𝑥+ 𝑦), 𝜎⟩ ⇓ 𝑛
where 𝑛 = 𝑛𝑥 + 𝑛𝑦

⟨𝑦, 𝜎⟩ ⇓ 𝑛𝑦 ⟨𝑥, 𝜎⟩ ⇓ 𝑛𝑥

⟨(𝑦 + 𝑥), 𝜎⟩ ⇓ 𝑛
where 𝑛 = 𝑛𝑥 + 𝑛𝑦

15.6 Operational Semantics for Lambda Calculus

As another example, we proceed to develop operational semantics for lambda calculus. Computation in 𝜆-calculus
does not involve a state that maps variables to values. Thus, transitions have the following form, with neither a state on
the left-hand nor on the right-hand side:

𝑒1 ⇓ 𝑒2

An expression 𝑒 that is in normal form evaluates to itself:

𝑒 ⇓ 𝑒
where 𝑛𝑜𝑟𝑚𝑎𝑙(𝑒)

The following defines whether or not an expression is in normal form:

𝑛𝑜𝑟𝑚𝑎𝑙(𝑣) = 𝑡𝑟𝑢𝑒

𝑛𝑜𝑟𝑚𝑎𝑙(𝜆𝑣. 𝑒) = 𝑛𝑜𝑟𝑚𝑎𝑙(𝑒)

𝑛𝑜𝑟𝑚𝑎𝑙(𝑣 𝑒) = 𝑡𝑟𝑢𝑒

𝑛𝑜𝑟𝑚𝑎𝑙((𝑒1 𝑒2) 𝑒3) = 𝑛𝑜𝑟𝑚𝑎𝑙(𝑒1 𝑒2)

𝑛𝑜𝑟𝑚𝑎𝑙((𝜆𝑣. 𝑒1) 𝑒2) = 𝑓𝑎𝑙𝑠𝑒

15.5. Examples 138

Programming Language Principles and Paradigms, Release 0.4

Here, 𝑣 denotes a variable, while 𝑒, and 𝑒𝑖 denote arbitrary expressions. A variable is always in normal form, while
a function abstraction is in normal form exactly when its body is in normal form. For a function application, if the
left-hand side is a variable or application in normal form, then the overall expression is in normal form. On the other
hand, if the left-hand side is an abstraction, then a 𝛽-reduction can be applied, so the application is not in normal form.

A function abstraction that is not in normal form is evaluated by evaluating its body:

𝑒1 ⇓ 𝑒2
𝜆𝑣. 𝑒1 ⇓ 𝜆𝑣. 𝑒2

In a function application, a 𝛽-reduction involves substituting the parameter of a function for its argument in the body of
the function, then evaluating the substituted body. Assuming that no variable names are shared between the function
and its argument, the following rule specifies this computation:

𝑒1 ⇓ 𝑒3 𝑠𝑢𝑏𝑠𝑡(𝑒3, 𝑣, 𝑒2) ⇓ 𝑒4
(𝜆𝑣. 𝑒1) 𝑒2 ⇓ 𝑒4

The 𝑠𝑢𝑏𝑠𝑡(𝑏𝑜𝑑𝑦, 𝑣𝑎𝑟, 𝑎𝑟𝑔) transformer performs substitution of an expression 𝑎𝑟𝑔 for a variable 𝑣𝑎𝑟 in some larger
expression 𝑏𝑜𝑑𝑦. It can be defined as follows:

𝑠𝑢𝑏𝑠𝑡(𝑣1, 𝑣, 𝑒) =

{︃
𝑒 if 𝑣 = 𝑣1

𝑣1 otherwise

𝑠𝑢𝑏𝑠𝑡(𝜆𝑣1. 𝑒1, 𝑣, 𝑒) =

{︃
𝜆𝑣1.𝑒1 if 𝑣 = 𝑣1

𝜆𝑣1. 𝑠𝑢𝑏𝑠𝑡(𝑒1, 𝑣, 𝑒) otherwise

𝑠𝑢𝑏𝑠𝑡(𝑒1 𝑒2, 𝑣, 𝑒) = 𝑠𝑢𝑏𝑠𝑡(𝑒1, 𝑣, 𝑒) 𝑠𝑢𝑏𝑠𝑡(𝑒2, 𝑣, 𝑒)

A variable is substituted with the argument expression if it is the same as the variable being replaced. Otherwise,
substitution has no effect on the variable.

For a function abstraction, if the function’s parameter has the same name as the substitution variable, then all references
to that name within the body of the function refer to the parameter rather than the substitution variable. Thus, the body
should remain unchanged. On the other hand, if the parameter name is different, then the body itself should recursively
undergo substitution.

Finally, applying substitution to a function application recursively applies it to both the function and its argument.

The transition rule above for 𝛽-reduction assumes that no𝛼-reduction is necessary between a function and its argument.
However, 𝛼-reduction becomes necessary in the following cases:

• The argument contains a bound variable with the same name as a bound or free variable in the function. The
following are examples:

(𝜆𝑥. 𝜆𝑦. 𝑥 𝑦) (𝜆𝑦. 𝑦)

(𝜆𝑥. 𝑥 𝑦) (𝜆𝑦. 𝑦)

• The function contains a bound variable with the same name as a free variable in the argument. The following is
an example:

(𝜆𝑥. 𝜆𝑦. 𝑥 𝑦) 𝑦

In the first case, our convention is to apply 𝛼-reduction to the argument, while in the second, we are forced to 𝛼-reduce
the function.

Thus, we need to determine the bound and free variables of an expression. We first define 𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝑒𝑥𝑝𝑟) to collect
the bound variables of an expression 𝑒𝑥𝑝𝑟:

𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝑣) = ∅
𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝑒1 𝑒2) = 𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝑒1) ∪ 𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝑒2)

𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝜆𝑣. 𝑒) = {𝑣} ∪ 𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝑒)

15.6. Operational Semantics for Lambda Calculus 139

Programming Language Principles and Paradigms, Release 0.4

A variable on its own contributes no bound variables. The bound variables of a function application are the union
of the bound variables in the function and its argument. The bound variables of a function abstraction are the bound
variables of the body plus the parameter of the function itself.

In order to determine the free variables of an expression, we require as input the set of variables that are bound when
the expression is encountered. We define 𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(𝑏𝑜𝑢𝑛𝑑, 𝑒𝑥𝑝𝑟) as follows:

𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(𝑏𝑜𝑢𝑛𝑑, 𝑣) =

{︃
{𝑣} if 𝑣 /∈ 𝑏𝑜𝑢𝑛𝑑

∅ otherwise

𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(𝑏𝑜𝑢𝑛𝑑, 𝑒1 𝑒2) = 𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(𝑏𝑜𝑢𝑛𝑑, 𝑒1) ∪ 𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(𝑏𝑜𝑢𝑛𝑑, 𝑒2)

𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(𝑏𝑜𝑢𝑛𝑑, 𝜆𝑣. 𝑒) = 𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(𝑏𝑜𝑢𝑛𝑑 ∪ {𝑣}, 𝑒)

A variable is free if it is not included in the bound set. The free variables of a function application are the union of the
free variables in the function and its argument. The free variables of a function abstraction are the free variables in the
body, using a bound set that includes the parameter of the abstraction.

We can also define a transformer 𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝑒𝑥𝑝𝑟) to rename the bound variables in 𝑒𝑥𝑝𝑟 that occur in the set 𝑣𝑎𝑟𝑠:

𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝑣) = 𝑣

𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝑒1 𝑒2) = 𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝑒1) 𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝑒2)

𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝜆𝑣. 𝑒) =

{︃
𝜆𝑤. 𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝑠𝑢𝑏𝑠𝑡(𝑒, 𝑣, 𝑤)) if 𝑣 ∈ 𝑣𝑎𝑟𝑠, where 𝑤 is fresh
𝜆𝑣. 𝑎𝑙𝑝ℎ𝑎(𝑣𝑎𝑟𝑠, 𝑒) otherwise

A variable on its own is not bound, so it should not be renamed. A function application is renamed by renaming both
the function and its argument. For a function abstraction, if the parameter appears in 𝑣𝑎𝑟𝑠, we replace it with a new
name that is fresh, meaning that it is not used anywhere in the program. This requires applying substitution to the body,
replacing the old variable name with the new one. We also have to recursively apply renaming to the body, whether the
parameter is replaced or not.

To put this all together, we define a transformer 𝑏𝑒𝑡𝑎(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔) for performing 𝛽-reduction when 𝑓𝑢𝑛𝑐 is applied to
𝑎𝑟𝑔:

𝑎𝑙𝑝ℎ𝑎𝑎𝑟𝑔(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔) = 𝑎𝑙𝑝ℎ𝑎(𝑏𝑜𝑢𝑛𝑑𝑣𝑎𝑟𝑠(𝑓𝑢𝑛𝑐) ∪ 𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(∅, 𝑓𝑢𝑛𝑐), 𝑎𝑟𝑔)
𝑎𝑙𝑝ℎ𝑎𝑓𝑢𝑛𝑐(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔) = 𝑎𝑙𝑝ℎ𝑎(𝑓𝑟𝑒𝑒𝑣𝑎𝑟𝑠(∅, 𝑎𝑟𝑔), 𝑓𝑢𝑛𝑐)

𝑏𝑒𝑡𝑎(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔) = 𝑠𝑢𝑏𝑠𝑡(𝑒′, 𝑣′, 𝑎𝑙𝑝ℎ𝑎𝑎𝑟𝑔(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔)), where 𝜆𝑣′. 𝑒′ = 𝑎𝑙𝑝ℎ𝑎𝑓𝑢𝑛𝑐(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔)

Here, 𝑎𝑙𝑝ℎ𝑎𝑎𝑟𝑔(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔) applies renaming to 𝑎𝑟𝑔 given the bound and free variables in 𝑓𝑢𝑛𝑐, and
𝑎𝑙𝑝ℎ𝑎𝑓𝑢𝑛𝑐(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔) applies renaming to 𝑓𝑢𝑛𝑐 given the free variables in 𝑎𝑟𝑔. The result must be an abstraction of
the form 𝜆𝑣′. 𝑒′, so 𝑏𝑒𝑡𝑎(𝑓𝑢𝑛𝑐, 𝑎𝑟𝑔) proceeds to substitute 𝑣′ for the renamed argument in the body 𝑒′.

We can now proceed to write a general transition rule for 𝛽-reduction:

𝑒1 ⇓ 𝑒3 𝑏𝑒𝑡𝑎(𝜆𝑣. 𝑒3, 𝑒2) ⇓ 𝑒4
(𝜆𝑣. 𝑒1) 𝑒2 ⇓ 𝑒4

Finally, we need a transition rule for a sequence of function applications:

𝑒1 𝑒2 ⇓ 𝑒4 𝑒4 𝑒3 ⇓ 𝑒5
(𝑒1 𝑒2) 𝑒3 ⇓ 𝑒5

We can apply the rules to derive the following computation for (𝜆𝑥. 𝜆𝑦. 𝑦 𝑥) 𝑥 𝑎:

𝜆𝑦. 𝑦 𝑥 ⇓ 𝜆𝑦. 𝑦 𝑥 𝑏𝑒𝑡𝑎(𝜆𝑥. 𝜆𝑦. 𝑦 𝑥, 𝑥) = 𝜆𝑦. 𝑦 𝑥 ⇓ 𝜆𝑦. 𝑦 𝑥

(𝜆𝑥. 𝜆𝑦. 𝑦 𝑥) 𝑥 ⇓ 𝜆𝑦. 𝑦 𝑥

𝑦 𝑥 ⇓ 𝑦 𝑥 𝑏𝑒𝑡𝑎(𝜆𝑦. 𝑦 𝑥, 𝑎) = 𝑎 𝑥 ⇓ 𝑎 𝑥

(𝜆𝑦. 𝑦 𝑥) 𝑎 ⇓ 𝑎 𝑥

(𝜆𝑥. 𝜆𝑦. 𝑦 𝑥) 𝑥 𝑎 ⇓ 𝑎 𝑥

Here, we’ve applied the rule for a sequence of function applications, then applied the 𝛽-reduction rule to each of the
premises. The end result is 𝑎 𝑥.

15.6. Operational Semantics for Lambda Calculus 140

CHAPTER

SIXTEEN

FORMAL TYPE SYSTEMS

We now turn our attention to type systems and type checking, which determines whether or not the use of types in a
program is correct. Given a language, we will define rules to determine the type of each expression in the language.
Where the rules do not assign a type for a particular expression, that expression should be considered erroneous.

We start with a simple language of boolean and integer expressions, parenthesized where necessary to avoid ambiguity:

𝑃 → 𝐸

𝐸 → 𝑁

| 𝐵
| (𝐸 + 𝐸)

| (𝐸 − 𝐸)

| (𝐸 * 𝐸)

| (𝐸 <= 𝐸)

| (𝐸 and 𝐸)

| not 𝐸
| (if 𝐸 then 𝐸 else 𝐸)

𝑁 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐿𝑖𝑡𝑒𝑟𝑎𝑙

𝐵 → true
| false

The two types in this language are 𝐼𝑛𝑡 for integer expressions and 𝐵𝑜𝑜𝑙 for boolean expressions. We use the notation
𝑡 : 𝑇 to denote that a term 𝑡 has the type 𝑇 . A statement of the form 𝑡 : 𝑇 is often called a typing relation or type
judgment.

The base typing rules assign types to integer and boolean literals:

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐿𝑖𝑡𝑒𝑟𝑎𝑙 : 𝐼𝑛𝑡

true : 𝐵𝑜𝑜𝑙

false : 𝐵𝑜𝑜𝑙

For more complex expressions, we have derivation rules that are similar to those in operational semantics, where the
top of the rule is the premise and the bottom the conclusion. The following is the rule for addition:

𝑡1 : 𝐼𝑛𝑡 𝑡2 : 𝐼𝑛𝑡

(𝑡1 + 𝑡2) : 𝐼𝑛𝑡

141

Programming Language Principles and Paradigms, Release 0.4

This rule states that if 𝑡1 has type 𝐼𝑛𝑡, and 𝑡2 has type 𝐼𝑛𝑡, then the term (𝑡1 + 𝑡2) also has type 𝐼𝑛𝑡. Thus, the rule
allows us to compute the type of a larger expression from the types of the subexpressions, as in the following derivation:

1 : 𝐼𝑛𝑡
3 : 𝐼𝑛𝑡 5 : 𝐼𝑛𝑡

(3 + 5) : 𝐼𝑛𝑡

(1 + (3 + 5)) : 𝐼𝑛𝑡

On the other hand, an expression such as (true + 1) is not well typed: since true : 𝐵𝑜𝑜𝑙, the premise in the rule for
addition does not hold, so it cannot be applied to derive a type for (true + 1). Since no type can be derived for the
expression, the expression does not type check, and it is erroneous.

The following rules for subtraction and multiplication are similar to that of addition:

𝑡1 : 𝐼𝑛𝑡 𝑡2 : 𝐼𝑛𝑡

(𝑡1 − 𝑡2) : 𝐼𝑛𝑡

𝑡1 : 𝐼𝑛𝑡 𝑡2 : 𝐼𝑛𝑡

(𝑡1 * 𝑡2) : 𝐼𝑛𝑡

The rule for comparison requires that the two operands have type 𝐼𝑛𝑡, in which case the type of the overall expression
is 𝐵𝑜𝑜𝑙:

𝑡1 : 𝐼𝑛𝑡 𝑡2 : 𝐼𝑛𝑡

(𝑡1 <= 𝑡2) : 𝐵𝑜𝑜𝑙

The rule for conjunction requires that the operands have type 𝐵𝑜𝑜𝑙, and the resulting expression also has type 𝐵𝑜𝑜𝑙.
Negation similarly requires its operand to have type 𝐵𝑜𝑜𝑙:

𝑡1 : 𝐵𝑜𝑜𝑙 𝑡2 : 𝐵𝑜𝑜𝑙

(𝑡1 and 𝑡2) : 𝐵𝑜𝑜𝑙

𝑡 : 𝐵𝑜𝑜𝑙

not 𝑡 : 𝐵𝑜𝑜𝑙

The conditional expression requires the test to have type 𝐵𝑜𝑜𝑙. However, the only restrictions on the remaining two
operands is that they are well typed, and that they both have the same type. For example, an expression such as
(if 𝑡𝑒𝑠𝑡 then 3 else 5)will always produce an integer, regardless of the value of 𝑡𝑒𝑠𝑡, while (if 𝑡𝑒𝑠𝑡 then 𝑓𝑎𝑙𝑠𝑒 else 𝑡𝑟𝑢𝑒)
will always produce a boolean. Thus, our typing rule has a type variable 𝑇 to represent the type of the last two operands,
ensuring that they match:

𝑡1 : 𝐵𝑜𝑜𝑙 𝑡2 : 𝑇 𝑡3 : 𝑇

(if 𝑡1 then 𝑡2 else 𝑡3) : 𝑇

16.1 Variables

Now that we have typing rules for a simple language of booleans and integers, we proceed to introduce variables into
the language. For the purposes of typing, we will assume that each variable in a program has a distinct name. As we
saw in lambda calculus, we can rename variables if necessary so that this is the case.

We introduce the following syntax for a binding construct to the language:

𝐸 → (let 𝑉 = 𝐸 in 𝐸)

| 𝑉
𝑉 → 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟

16.1. Variables 142

Programming Language Principles and Paradigms, Release 0.4

The semantics of this construct are to replace all occurrences of the given variable in the body of the let with the
variable’s bound value. Thus, an expression such as the following should produce an integer:

(let 𝑥 = 3 in (𝑥+ 2))

On the other hand, the following expression should not type check, since replacing 𝑥 with its bound value results in an
ill-typed body:

(let 𝑥 = 3 in not 𝑥)

In order to determine whether or not the body of a let is well typed, we need a type context or type environment that
keeps track of the type of the variables that are in scope. The following is the notation we use for a type environment:

• The symbol Γ represents a type environment.

• The notation 𝑥 : 𝑇 ∈ Γ denotes that Γ maps the name 𝑥 to the type 𝑇 .

• We extend a type environment as Γ, 𝑥 : 𝑇 , which denotes the type environment that assigns the type 𝑇 to 𝑥 but
assigns all other variables the same type as in Γ.

• We express a type judgment as Γ ⊢ 𝑡 : 𝑇 , which states that the term 𝑡 has type 𝑇 within the context of the type
environment Γ.

As indicated by the last point above, type judgments are now made in the context of a type environment that maps
variables to their types. If a particular term has the same type regardless of typing environment, then we can elide the
environment in a type judgment. For example, the judgment ⊢ true : 𝐵𝑜𝑜𝑙 indicates that true always has type 𝐵𝑜𝑜𝑙
within the context of any type environment.

The following are our existing typing rules using the notation of type environments:

⊢ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐿𝑖𝑡𝑒𝑟𝑎𝑙 : 𝐼𝑛𝑡

⊢ true : 𝐵𝑜𝑜𝑙

⊢ false : 𝐵𝑜𝑜𝑙

Γ ⊢ 𝑡1 : 𝐼𝑛𝑡 Γ ⊢ 𝑡2 : 𝐼𝑛𝑡

Γ ⊢ (𝑡1 + 𝑡2) : 𝐼𝑛𝑡

Γ ⊢ 𝑡1 : 𝐼𝑛𝑡 Γ ⊢ 𝑡2 : 𝐼𝑛𝑡

Γ ⊢ (𝑡1 − 𝑡2) : 𝐼𝑛𝑡

Γ ⊢ 𝑡1 : 𝐼𝑛𝑡 Γ ⊢ 𝑡2 : 𝐼𝑛𝑡

Γ ⊢ (𝑡1 * 𝑡2) : 𝐼𝑛𝑡

Γ ⊢ 𝑡1 : 𝐼𝑛𝑡 Γ ⊢ 𝑡2 : 𝐼𝑛𝑡

Γ ⊢ (𝑡1 <= 𝑡2) : 𝐵𝑜𝑜𝑙

Γ ⊢ 𝑡1 : 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑡2 : 𝐵𝑜𝑜𝑙

Γ ⊢ (𝑡1 and 𝑡2) : 𝐵𝑜𝑜𝑙

Γ ⊢ 𝑡 : 𝐵𝑜𝑜𝑙

Γ ⊢ not 𝑡 : 𝐵𝑜𝑜𝑙

Γ ⊢ 𝑡1 : 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑡2 : 𝑇 Γ ⊢ 𝑡3 : 𝑇

Γ ⊢ (if 𝑡1 then 𝑡2 else 𝑡3) : 𝑇

We need a rule for typing a variable:

𝑣 : 𝑇 ∈ Γ

Γ ⊢ 𝑣 : 𝑇

16.1. Variables 143

Programming Language Principles and Paradigms, Release 0.4

Here, we use 𝑣 to denote a variable. The rule states that if the type environment Γ maps the variable 𝑣 to type 𝑇 , then
the term consisting of 𝑣 itself has type 𝑇 within the context of Γ.

We can now add a rule for the let binding construct:

Γ ⊢ 𝑡1 : 𝑇1 Γ, 𝑣 : 𝑇1 ⊢ 𝑡2 : 𝑇2

Γ ⊢ (let 𝑣 = 𝑡1 in 𝑡2) : 𝑇2

Here, we use 𝑣 to denote the name of the variable introduced by the let. The rule states that if the initializer expression
is assigned the type 𝑇1 within the context of the original type environment Γ, and the body has type 𝑇2 within the
context of the original environment extended with the mapping 𝑣 : 𝑇1, then the overall let expression also has type 𝑇2.
We can use this to derive the type of our first let example in the context of any type environment:

⊢ 3 : 𝐼𝑛𝑡

𝑥 : 𝐼𝑛𝑡 ∈ 𝑥 : 𝐼𝑛𝑡

𝑥 : 𝐼𝑛𝑡 ⊢ 𝑥 : 𝐼𝑛𝑡 𝑥 : 𝐼𝑛𝑡 ⊢ 2 : 𝐼𝑛𝑡
𝑥 : 𝐼𝑛𝑡 ⊢ (𝑥+ 2) : 𝐼𝑛𝑡

⊢ (let 𝑥 = 3 in (𝑥+ 2)) : 𝐼𝑛𝑡

16.2 Functions

Now that we have typing rules for expressions of booleans and integers, we proceed to add functions to our language
and introduce rules for computing the types of function abstractions and applications. As in lambda calculus, we will
consider functions that take in exactly one argument. A function then has two types that are relevant: the type of the
argument to the function, and the type of its return value. We will use the notation 𝑇1 → 𝑇2 to denote the type of a
function that takes in an argument of type 𝑇1 and returns a value of type 𝑇2.

For simplicity, we will require that the parameter type of a function be explicitly specified. It would also be reasonable to
infer the type of the parameter from how it is used in the body, or to deduce the type of the parameter independently each
time the function is applied to an argument. The latter would provide a form of parametric polymorphism. However,
we will not consider such schemes here.

To allow functions to be defined, with explicit typing of parameters, we extend our language as follows:

𝐸 → (lambda 𝑉 : 𝑇 . 𝐸)

| (𝐸 𝐸)

𝑇 → 𝐼𝑛𝑡

| 𝐵𝑜𝑜𝑙

| 𝑇 → 𝑇

| (𝑇)

We introduce two new expressions, one for function abstraction and one for function application, borrowing syntax
from 𝜆-calculus. We also introduce types into our grammar, with 𝐼𝑛𝑡 and 𝐵𝑜𝑜𝑙 as the non-function types. A function
type is specified by separating its input and output types by the type constructor →. When chained, the type constructor
is right associative, so that 𝐼𝑛𝑡 → 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 is equivalent to 𝐼𝑛𝑡 → (𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙), denoting a function that takes
in an 𝐼𝑛𝑡 and returns a function with type 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙.

As with let, we will assume that parameter names introduced by lambda expressions are distinct from any other
names in the program, knowing that we can always rename variables to ensure that this is the case.

We can now define the typing rule for abstraction as follows:

Γ, 𝑣 : 𝑇1 ⊢ 𝑡2 : 𝑇2

Γ ⊢ (lambda 𝑣 : 𝑇1. 𝑡2) : 𝑇1 → 𝑇2

The rule states that if the body 𝑡2 has type 𝑇2 in the type environment that consists of Γ extended with the mapping
𝑣 : 𝑇1 for the parameter, then the function as a whole has type 𝑇1 → 𝑇2. Thus, the function takes in a value of type 𝑇1

as an argument and returns a value of type 𝑇2.

16.2. Functions 144

Programming Language Principles and Paradigms, Release 0.4

The following is the rule for application:

Γ ⊢ 𝑡1 : 𝑇2 → 𝑇3 Γ ⊢ 𝑡2 : 𝑇2

Γ ⊢ (𝑡1 𝑡2) : 𝑇3

This states that if the function has type 𝑇2 → 𝑇3, taking in a 𝑇2 and returning a 𝑇3, and the argument has the requisite
type 𝑇2, then the application results in the type 𝑇3.

As an example, consider the following program fragment:

(let 𝑓 = (lambda 𝑥 : 𝐼𝑛𝑡. (𝑥 <= 10)) in (𝑓 3))

We can derive the type of this expression in any type environment as follows:

𝑥 : 𝐼𝑛𝑡 ∈ 𝑥 : 𝐼𝑛𝑡

𝑥 : 𝐼𝑛𝑡 ⊢ 𝑥 : 𝐼𝑛𝑡 𝑥 : 𝐼𝑛𝑡 ⊢ 10 : 𝐼𝑛𝑡
𝑥 : 𝐼𝑛𝑡 ⊢ (𝑥 <= 10) : 𝐵𝑜𝑜𝑙

⊢ (lambda 𝑥 : 𝐼𝑛𝑡. (𝑥 <= 10)) : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙

𝑓 : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 ∈ 𝑓 : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙

𝑓 : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 ⊢ 𝑓 : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 𝑓 : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 ⊢ 3 : 𝐼𝑛𝑡

𝑓 : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 ⊢ (𝑓 3) : 𝐵𝑜𝑜𝑙

⊢ (let 𝑓 = (lambda 𝑥 : 𝐼𝑛𝑡. (𝑥 <= 10)) in (𝑓 3)) : 𝐵𝑜𝑜𝑙

At the bottom of the derivation, we apply the rule for let, requiring us to compute the type of the variable initializer as
well as the type of the body in a type environment where the new variable has its computed type.

To compute the type of the initializer, we apply the rule for abstraction, requiring us to compute the type of the body
in a type environment with the function parameter having its designated type of 𝐼𝑛𝑡. This applies the rule for <=,
further requiring computation of types for the variable 𝑥 and integer literal 10. The body then has the type 𝐵𝑜𝑜𝑙, so
the abstraction has type 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙.

We can then compute the type of the body of the 𝑙𝑒𝑡, in a type context where 𝑓 has type 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙. This requires
us to apply the rule for function application, computing the type of both the function and its argument. The function is
the variable 𝑓 , which has type 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 in the type environment. The argument is the integer literal 3, which has
type 𝐼𝑛𝑡. Thus, the application is applying an 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙 to an 𝐼𝑛𝑡, resulting in 𝐵𝑜𝑜𝑙. This is also the type of the
let expression as a whole.

16.3 Subtyping

Our working language now has the base types 𝐵𝑜𝑜𝑙 and 𝐼𝑛𝑡, as well as function types. Let us extend the language by
adding floating-point numbers:

𝐸 → 𝐹

𝐹 → 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔𝐿𝑖𝑡𝑒𝑟𝑎𝑙

𝑇 → 𝐹𝑙𝑜𝑎𝑡

We add a typing rule for floating-point literals:

⊢ 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔𝐿𝑖𝑡𝑒𝑟𝑎𝑙 : 𝐹𝑙𝑜𝑎𝑡

We would also like to allow operations such as addition on expressions of type 𝐹𝑙𝑜𝑎𝑡. We could define a separate rule
for adding two 𝐹𝑙𝑜𝑎𝑡s:

Γ ⊢ 𝑡1 : 𝐹𝑙𝑜𝑎𝑡 Γ ⊢ 𝑡2 : 𝐹𝑙𝑜𝑎𝑡

Γ ⊢ (𝑡1 + 𝑡2) : 𝐹𝑙𝑜𝑎𝑡

However, the combination of this rule and the rule for adding 𝐼𝑛𝑡s does not permit us to add a 𝐹𝑙𝑜𝑎𝑡 and an 𝐼𝑛𝑡.
Adding more rules for such a combination is not a scalable solution: introducing more numerical types would result in
a combinatorial explosion in the number of rules required.

16.3. Subtyping 145

Programming Language Principles and Paradigms, Release 0.4

Functions pose a similar problem. If we define a function such as (lambda 𝑥 : 𝐹𝑙𝑜𝑎𝑡. (𝑥+ 1.0)), we would like to be
able to apply it to an 𝐼𝑛𝑡 as well as a 𝐹𝑙𝑜𝑎𝑡. Conceptually, every integer is also a floating-point number3, so we would
expect such an operation to be valid.

Rather than adding more rules to permit this specific case, we introduce a notion of subtyping that allows a type to
be used in contexts that expect a different type. We say that type 𝑆 is a subtype of type 𝑇 if a term of type 𝑆 can be
substituted anywhere a term of type 𝑇 is expected. We use the notation 𝑆 <: 𝑇 to denote that 𝑆 is a subtype of 𝑇 .

The subtype relation <: must satisfy the following requirements:

• It is reflexive, meaning that for any type 𝑆, it must be that 𝑆 <: 𝑆, so that 𝑆 is a subtype of itself.

• It is transitive, so that 𝑆 <: 𝑇 and 𝑇 <: 𝑈 implies that 𝑆 <: 𝑈 .

Thus, the subtype relation must be a preorder. In many languages, the subtype relation is also a partial order, addi-
tionally satisfying the following:

• It is antisymmetric, so that 𝑆 <: 𝑇 and 𝑇 <: 𝑆 implies that 𝑆 = 𝑇 .

In our working language, we specify that 𝐼𝑛𝑡 is a subtype of 𝐹𝑙𝑜𝑎𝑡:

𝐼𝑛𝑡 <: 𝐹𝑙𝑜𝑎𝑡

To allow our type system to accommodate subtyping, we introduce a new typing rule, called the subsumption rule, to
enable a subtype to be used where a supertype is expected:

Γ ⊢ 𝑡 : 𝑆 𝑆 <: 𝑇

Γ ⊢ 𝑡 : 𝑇

This rule states that if the type of term 𝑡 has been computed as 𝑆, and 𝑆 is a subtype of 𝑇 , then we can also conclude
that 𝑡 has type 𝑇 . This allows a function that expects a 𝐹𝑙𝑜𝑎𝑡 to be applied to an 𝐼𝑛𝑡 as well:

Γ ⊢ 𝑓 : 𝐹𝑙𝑜𝑎𝑡 → 𝐹𝑙𝑜𝑎𝑡
Γ ⊢ 𝑥 : 𝐼𝑛𝑡 𝐼𝑛𝑡 <: 𝐹𝑙𝑜𝑎𝑡

Γ ⊢ 𝑥 : 𝐹𝑙𝑜𝑎𝑡
Γ ⊢ (𝑓 𝑥) : 𝐹𝑙𝑜𝑎𝑡

16.3.1 Subtyping and Arithmetic Operators

It may be tempting to rewrite the rules for arithmetic operators on numbers to require both operands to be of the 𝐹𝑙𝑜𝑎𝑡
type:

Γ ⊢ 𝑡1 : 𝐹𝑙𝑜𝑎𝑡 Γ ⊢ 𝑡2 : 𝐹𝑙𝑜𝑎𝑡

Γ ⊢ (𝑡1 + 𝑡2) : 𝐹𝑙𝑜𝑎𝑡

However, such a rule always produces a 𝐹𝑙𝑜𝑎𝑡 as a result. This precludes us from using the result as an argument to a
function that expects an 𝐼𝑛𝑡 as its argument: it is not the case that 𝐹𝑙𝑜𝑎𝑡 <: 𝐼𝑛𝑡, so we cannot use a 𝐹𝑙𝑜𝑎𝑡 in a context
that requires 𝐼𝑛𝑡.

Instead, we need to rewrite the rule such that it produces a 𝐹𝑙𝑜𝑎𝑡 when at least one of the operands is a 𝐹𝑙𝑜𝑎𝑡, but it
results in an 𝐼𝑛𝑡 if both operands are 𝐼𝑛𝑡s. More generally, we desire the following, where 𝑇1 and 𝑇2 are the types of
the two operands:

• Both operands are of numerical type. In our language, this means that they are each of a type that is some subtype
of 𝐹𝑙𝑜𝑎𝑡. Thus, we require that 𝑇1 <: 𝐹𝑙𝑜𝑎𝑡 and 𝑇2 <: 𝐹𝑙𝑜𝑎𝑡.

3 This may not actually be the case in the implementation, depending on the representation used for the two types. However, it still makes sense
semantically that an integer should be allowed where a floating-point number is expected.

16.3. Subtyping 146

Programming Language Principles and Paradigms, Release 0.4

• The result is the least upper bound, or join, of the two operand types. This means that the result type is the
minimal type 𝑇 such that 𝑇1 <: 𝑇 and 𝑇2 <: 𝑇 . We use the notation4 𝑇 = 𝑇1 ⊔ 𝑇2 to denote that 𝑇 is the join
of 𝑇1 and 𝑇2.

Since 𝑆 <: 𝑆, it is always the case that 𝑆 = 𝑆 ⊔ 𝑆. Thus, in our language, we have 𝐼𝑛𝑡 = 𝐼𝑛𝑡 ⊔ 𝐼𝑛𝑡,
𝐹𝑙𝑜𝑎𝑡 = 𝐹𝑙𝑜𝑎𝑡 ⊔ 𝐹𝑙𝑜𝑎𝑡, and 𝐹𝑙𝑜𝑎𝑡 = 𝐼𝑛𝑡 ⊔ 𝐹𝑙𝑜𝑎𝑡.

Putting these requirements together, we can define the typing rule for addition as follows:

Γ ⊢ 𝑡1 : 𝑇1 Γ ⊢ 𝑡2 : 𝑇2 𝑇1 <: 𝐹𝑙𝑜𝑎𝑡 𝑇2 <: 𝐹𝑙𝑜𝑎𝑡 𝑇 = 𝑇1 ⊔ 𝑇2

Γ ⊢ (𝑡1 + 𝑡2) : 𝑇

Subtraction and multiplication can be similarly defined.

16.3.2 The Top Type

Many languages include a 𝑇𝑜𝑝 type, also written as ⊤, that is a supertype of every other type in the language. Thus,
for any type 𝑆, we have:

𝑆 <: 𝑇𝑜𝑝

The 𝑇𝑜𝑝 type corresponds to the 𝑂𝑏𝑗𝑒𝑐𝑡 type in many object-oriented languages. For example, the object type in
Python is a supertype of every other type.

Introducing 𝑇𝑜𝑝 into our language ensures that a join exists for every pair of types in the language. However, it is not
necessarily the case in general that a particular language has a join for every pair of types, even if it has a 𝑇𝑜𝑝 type.

The existence of a join for each pair of types allows us to loosen the typing rule for conditionals:

Γ ⊢ 𝑡1 : 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑡2 : 𝑇2 Γ ⊢ 𝑡3 : 𝑇3 𝑇 = 𝑇2 ⊔ 𝑇3

Γ ⊢ (if 𝑡1 then 𝑡2 else 𝑡3) : 𝑇

Rather than requiring that both branches have exactly the same type, we allow each branch to have an arbitrary type.
Since we can always compute the join of the two types in our language, the resulting type of the conditional is the join
of the types of the branches.

16.3.3 Subtyping and Functions

In a language with higher-order functions, subtyping is also applicable to function types. There are contexts where
it would be semantically valid to accept a function type that is different from the one that is expected. For instance,
consider the following higher-order function:

(lambda 𝑓 : 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙. (𝑓 3))

This function takes in another function 𝑓 as an argument and then applies 𝑓 to an 𝐼𝑛𝑡. If the actual function provided
as an argument had type 𝐹𝑙𝑜𝑎𝑡 → 𝐵𝑜𝑜𝑙 instead, it would still be semantically valid to invoke it on an 𝐼𝑛𝑡. Thus, it
should be the case that 𝐹𝑙𝑜𝑎𝑡 → 𝐵𝑜𝑜𝑙 <: 𝐼𝑛𝑡 → 𝐵𝑜𝑜𝑙, since the former can be used in contexts that expect the latter.

Now consider another higher-order function:

(lambda 𝑓 : 𝐼𝑛𝑡 → 𝐹𝑙𝑜𝑎𝑡. (𝑓 3))

This new function takes in a function 𝑓 and applies it to an 𝐼𝑛𝑡 to produce a 𝐹𝑙𝑜𝑎𝑡. However, if the function we provide
as the argument has type 𝐼𝑛𝑡 → 𝐼𝑛𝑡, it would produce an 𝐼𝑛𝑡; the latter is a valid substitution for a 𝐹𝑙𝑜𝑎𝑡, making
such an argument semantically valid. Thus, it should also be the case that 𝐼𝑛𝑡 → 𝐼𝑛𝑡 <: 𝐼𝑛𝑡 → 𝐹𝑙𝑜𝑎𝑡.

4 The symbols ∨ and ∪ are also commonly used to denote the least upper bound. However, we will stick to ⊔ to avoid confusion with disjunction
and set union.

16.3. Subtyping 147

Programming Language Principles and Paradigms, Release 0.4

Putting both cases together, we end up with the following subtyping rule for functions:

𝑇1 <: 𝑆1 𝑆2 <: 𝑇2

𝑆1 → 𝑆2 <: 𝑇1 → 𝑇2

A function that accepts parameters of type 𝑆1 accepts more general argument values than one that accepts type 𝑇1; the
former has a more general domain than the latter. Any contexts that expect to pass a 𝑇1 as an argument would be just
as well served if the function accepts an 𝑆1. Thus, the function type that accepts an 𝑆1 should be substitutable for the
function type that accepts a 𝑇1.

A function that produces a return value of type 𝑆2 has a more restricted set of outputs, or codomain, than a function
that produces a 𝑇2. Any context that expects a 𝑇2 as output would be just as well served by an 𝑆2 as output. Thus, the
function type that produces an 𝑆2 should be substitutable for the function type that produces a 𝑇2.

The subtyping rule permits a contravariant parameter type in the function subtype: it is contravariant since the direction
of the relation <: is reversed for the parameter types compared to the relation for the function types. The rule also
permits a covariant return type, since the direction of <: is the same for the return types and the function types.

Covariant return types often appear in object-oriented languages in a different context, that of overriding a base class’s
method, for the same semantic reasons they are valid here. We will discuss covariance and contravariance in object-
oriented programming in more detail later.

16.4 Full Typing Rules

Putting together all the features we have discussed, the following are the rules for subtyping:

• 𝑇𝑜𝑝:

𝑆 <: 𝑇𝑜𝑝

• Numbers:

𝐼𝑛𝑡 <: 𝐹𝑙𝑜𝑎𝑡

• Functions:

𝑇1 <: 𝑆1 𝑆2 <: 𝑇2

𝑆1 → 𝑆2 <: 𝑇1 → 𝑇2

• Subsumption:

Γ ⊢ 𝑡 : 𝑆 𝑆 <: 𝑇

Γ ⊢ 𝑡 : 𝑇

The typing rules for each kind of term are as follows:

• Literals:

⊢ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐿𝑖𝑡𝑒𝑟𝑎𝑙 : 𝐼𝑛𝑡

⊢ true : 𝐵𝑜𝑜𝑙

⊢ false : 𝐵𝑜𝑜𝑙

⊢ 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔𝐿𝑖𝑡𝑒𝑟𝑎𝑙 : 𝐹𝑙𝑜𝑎𝑡

16.4. Full Typing Rules 148

Programming Language Principles and Paradigms, Release 0.4

• Arithmetic:

Γ ⊢ 𝑡1 : 𝑇1 Γ ⊢ 𝑡2 : 𝑇2 𝑇1 <: 𝐹𝑙𝑜𝑎𝑡 𝑇2 <: 𝐹𝑙𝑜𝑎𝑡 𝑇 = 𝑇1 ⊔ 𝑇2

Γ ⊢ (𝑡1 + 𝑡2) : 𝑇

Γ ⊢ 𝑡1 : 𝑇1 Γ ⊢ 𝑡2 : 𝑇2 𝑇1 <: 𝐹𝑙𝑜𝑎𝑡 𝑇2 <: 𝐹𝑙𝑜𝑎𝑡 𝑇 = 𝑇1 ⊔ 𝑇2

Γ ⊢ (𝑡1 − 𝑡2) : 𝑇

Γ ⊢ 𝑡1 : 𝑇1 Γ ⊢ 𝑡2 : 𝑇2 𝑇1 <: 𝐹𝑙𝑜𝑎𝑡 𝑇2 <: 𝐹𝑙𝑜𝑎𝑡 𝑇 = 𝑇1 ⊔ 𝑇2

Γ ⊢ (𝑡1 * 𝑡2) : 𝑇

• Comparisons5:

Γ ⊢ 𝑡1 : 𝑇1 Γ ⊢ 𝑡2 : 𝑇2 𝑇1 <: 𝐹𝑙𝑜𝑎𝑡 𝑇2 <: 𝐹𝑙𝑜𝑎𝑡

Γ ⊢ (𝑡1 <= 𝑡2) : 𝐵𝑜𝑜𝑙

• Logic:

Γ ⊢ 𝑡1 : 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑡2 : 𝐵𝑜𝑜𝑙

Γ ⊢ (𝑡1 and 𝑡2) : 𝐵𝑜𝑜𝑙

Γ ⊢ 𝑡 : 𝐵𝑜𝑜𝑙

Γ ⊢ not 𝑡 : 𝐵𝑜𝑜𝑙

• Conditionals:

Γ ⊢ 𝑡1 : 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑡2 : 𝑇2 Γ ⊢ 𝑡3 : 𝑇3 𝑇 = 𝑇2 ⊔ 𝑇3

Γ ⊢ (if 𝑡1 then 𝑡2 else 𝑡3) : 𝑇

• Variables:

𝑣 : 𝑇 ∈ Γ

Γ ⊢ 𝑣 : 𝑇

• let:

Γ ⊢ 𝑡1 : 𝑇1 Γ, 𝑣 : 𝑇1 ⊢ 𝑡2 : 𝑇2

Γ ⊢ (let 𝑣 = 𝑡1 in 𝑡2) : 𝑇2

• Function abstraction and application:

Γ, 𝑣 : 𝑇1 ⊢ 𝑡2 : 𝑇2

Γ ⊢ (lambda 𝑣 : 𝑇1. 𝑡2) : 𝑇1 → 𝑇2

Γ ⊢ 𝑡1 : 𝑇2 → 𝑇3 Γ ⊢ 𝑡2 : 𝑇2

Γ ⊢ (𝑡1 𝑡2) : 𝑇3

5 We avoid unnecessary conversions in this rule, in light of the fact that many implementations use different representations for integer and
floating-point values. Of course, such an implementation would still require a conversion when the operand types are different.

16.4. Full Typing Rules 149

Part IV

Data Abstraction

150

Programming Language Principles and Paradigms, Release 0.4

We now examine mechanisms for constructing abstract data types (ADTs), which allow us to abstract the interface for
a piece of data from its implementation. We also look at mechanisms for encapsulation, which bind together the data
of an ADT along with the functions that operate on that data.

151

CHAPTER

SEVENTEEN

FUNCTIONAL DATA ABSTRACTION

We start by modeling data using the tools of procedural abstraction, beginning with a simple pair abstraction and
progressing to more complex abstract data types that encode behavior with messages.

17.1 Pairs and Lists

Recall that in 𝜆-calculus, a pair is implemented as a function that takes in two items and returns another function:

𝑝𝑎𝑖𝑟 = 𝜆𝑥. 𝜆𝑦. 𝜆𝑓. 𝑓 𝑥 𝑦

We could then obtain the first item by applying the resulting function to 𝑡𝑟𝑢𝑒, and the second item by applying it to
𝑓𝑎𝑙𝑠𝑒:

𝑓𝑖𝑟𝑠𝑡 = 𝜆𝑝. 𝑝 𝑡𝑟𝑢𝑒

𝑠𝑒𝑐𝑜𝑛𝑑 = 𝜆𝑝. 𝑝 𝑓𝑎𝑙𝑠𝑒

Following a similar strategy, we can define a pair constructor in Python:

def pair(x, y):
def get(i):

return x if i == 0 else y

return get

As in𝜆-calculus, the pair() function returns a function with the two items located in the latter’s non-local environment.
Now instead of applying the resulting function to a boolean, we call it on an index to retrieve the first or the second
item:

def first(p):
return p(0)

def second(p):
return p(1)

>>> p = pair(3, 4)
>>> first(p)
3
>>> second(p)
4

152

Programming Language Principles and Paradigms, Release 0.4

Using pairs, we can build a full sequence abstraction, as in Scheme’s pairs and lists. Before we proceed to do so,
however, observe that our current pair implementation does not support mutation, which is a key feature of the sequence
abstractions provided in imperative languages. We can implement mutation by defining separate get and set functions,
using an immutable pair to return both when we construct a mutable pair:

def mutable_pair(x, y):
def get(i):

return x if i == 0 else y

def set(i, value):
nonlocal x, y
if i == 0:

x = value
else:

y = value

return pair(get, set)

def mutable_first(p):
return first(p)(0)

def mutable_second(p):
return first(p)(1)

def set_first(p, value):
second(p)(0, value)

def set_second(p, value):
second(p)(1, value)

>>> p = mutable_pair(3, 4)
>>> mutable_first(p)
3
>>> mutable_second(p)
4
>>> set_first(p, 5)
>>> set_second(p, 6)
>>> mutable_first(p)
5
>>> mutable_second(p)
6

We use an immutable pair rather than a mutable one to return the get and set functions so as to avoid infinite recursion in
mutable_pair(). In the definition of set(), the nonlocal statement is required so that the x and y in the non-local
environment are modified.

While this representation works, it does not provide any encapsulation. We now have four functions that manipulate
mutable pairs, and we had to name them carefully to avoid conflict with those that work with immutable pairs.

17.1. Pairs and Lists 153

Programming Language Principles and Paradigms, Release 0.4

17.2 Message Passing

An alternative strategy, assuming that we have access to a string data type, is message passing, in which we send
specific messages to an ADT that determine what operations are performed on the data. This can be implemented
with a dispatch function that checks the input message against a known set of behaviors and then takes the appropriate
action. Using message passing, we can define a mutable pair as follows:

def mutable_pair(x, y):
def dispatch(message, value=None):

nonlocal x, y
if message == 'first':

return x
elif message == 'second':

return y
elif message == 'set_first':

x = value
elif message == 'set_second':

y = value

return dispatch

>>> p = mutable_pair(3, 4)
>>> p('first')
3
>>> p('second')
4
>>> p('set_first', 5)
>>> p('set_second', 6)
>>> p('first')
5
>>> p('second')
6

We still represent a pair as a function, but now instead of calling external functions on a pair, we pass it a message and, if
appropriate, a value to obtain the action we want. The pair ADT is entirely encapsulated within the mutable_pair()
function.

17.3 Lists

Now that we have mutable pairs, we can implement a mutable list as a sequence of pairs, as in Scheme. We will use
the None object to represent an empty list:

def mutable_list():
empty_list = None
head = empty_list
tail = empty_list

def size(mlist):
if mlist is empty_list:

return 0
return 1 + size(mlist('second'))

(continues on next page)

17.2. Message Passing 154

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

def getitem(mlist, i):
if i == 0:

return mlist('first')
return getitem(mlist('second'), i - 1)

def setitem(mlist, i, value):
if i == 0:

mlist('set_first', value)
else:

setitem(mlist('second'), i - 1, value)

def to_string():
if head is empty_list:

return '[]'
return ('[' + str(head('first')) +

to_string_helper(head('second')) + ']')

def to_string_helper(mlist):
if mlist is empty_list:

return ''
return (', ' + str(mlist('first')) +

to_string_helper(mlist('second')))

def append(value):
nonlocal head, tail
if head is empty_list:

head = mutable_pair(value, empty_list)
tail = head

else:
tail('set_second', mutable_pair(value, empty_list))
tail = tail('second')

def dispatch(message, arg1=None, arg2=None):
if message == 'len':

return size(head)
elif message == 'getitem':

return getitem(head, arg1)
elif message == 'setitem':

return setitem(head, arg1, arg2)
elif message == 'str':

return to_string()
elif message == 'append':

return append(arg1)

return dispatch

To avoid implementing all our functionality within the dispatch() function, we’ve defined separate functions to
perform each action. Then the task of the dispatch() function is to call the appropriate function based on the input
message. The following demonstrates how to use the mutable list ADT:

>>> l = mutable_list()
(continues on next page)

17.3. Lists 155

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

>>> l('str')
'[]'
>>> l('len')
0
>>> l('append', 3)
>>> l('append', 4)
>>> l('append', 5)
>>> l('str')
'[3, 4, 5]'
>>> l('len')
3
>>> l('getitem', 1)
4
>>> l('setitem', 1, 6)
>>> l('str')
'[3, 6, 5]'

17.4 Dictionaries

We can implement a dictionary ADT using a list of records, each of which consists of a key-value pair.

def dictionary():
records = mutable_list()

def get_record(key):
size = records('len')
i = 0
while i < size:

record = records('getitem', i)
if key == record('first'):

return record
i += 1

return None

def getitem(key):
record = get_record(key)
return record('second') if record is not None else None

def setitem(key, value):
record = get_record(key)
if record is None:

records('append', mutable_pair(key, value))
else:

record('set_second', value)

def dispatch(message, key=None, value=None):
if message == 'getitem':

return getitem(key)
elif message == 'setitem':

setitem(key, value)
(continues on next page)

17.4. Dictionaries 156

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

return dispatch

For simplicity, we only implement two messages, one for inserting a key-value pair into a dictionary and one for
retrieving the value of a key. A key is looked up by searching through the records for a matching key, and if it is found,
the associated value is returned. A key-value pair is inserted by looking up the key and modifying the associated value
if it is found. If it is not found, then a new record is inserted.

>>> d = dictionary()
>>> d('setitem', 'a', 3)
>>> d('setitem', 'b', 4)
>>> d('getitem', 'a')
3
>>> d('getitem', 'b')
4
>>> d('setitem', 'a', 5)
>>> d('getitem', 'a')
5

Compare this to code that works with Python’s built-in dictionaries, with special methods invoked directly rather than
using operators:

>>> d = dict()
>>> d.__setitem__('a', 3)
>>> d.__setitem__('b', 4)
>>> d.__getitem__('a')
3
>>> d.__getitem__('b')
4
>>> d.__setitem__('a', 5)
>>> d.__getitem__('a')
5

The abstraction we provide is almost the same, with only minor differences in syntax. On the other hand, our dictionary
implementation is particularly inefficient, requiring 𝒪(𝑛2) time to perform an operation on a dictionary with 𝑛 keys.
We can reduce this to linear time by implementing an iterator abstraction on lists, but we will not do so here.

17.5 Dispatch Dictionaries

Now that we have dictionaries, we can make use of them to simplify our handling of messages. Previously, our dispatch
function consisted of a lengthy conditional that called the appropriate internal function based on the message. In order
to accommodate internal functions that take in different numbers of arguments, we had to arrange for the dispatch
function to be able to take in the maximum number of arguments over the internal functions, and we had to use default
arguments to enable fewer arguments to be passed. This can get unwieldy and error-prone the more complex our ADTs
become.

Instead, we can store the mapping of messages to functions inside of a dispatch dictionary. When we pass a message
to an ADT, it returns back the function corresponding to that message, which we can then call with the appropriate
arguments. The following uses this pattern to define an ADT for a bank account:

17.5. Dispatch Dictionaries 157

Programming Language Principles and Paradigms, Release 0.4

def account(initial_balance):
def deposit(amount):

new_balance = dispatch('getitem', 'balance') + amount
dispatch('setitem', 'balance', new_balance)
return new_balance

def withdraw(amount):
balance = dispatch('getitem', 'balance')
if amount > balance:

return 'Insufficient funds'
balance -= amount
dispatch('setitem', 'balance', balance)
return balance

def get_balance():
return dispatch('getitem', 'balance')

dispatch = dictionary()
dispatch('setitem', 'balance', initial_balance)
dispatch('setitem', 'deposit', deposit)
dispatch('setitem', 'withdraw', withdraw)
dispatch('setitem', 'get_balance', get_balance)

def dispatch_message(message):
return dispatch('getitem', message)

return dispatch_message

The dispatch dictionary contains an entry for the account balance, as well as functions to deposit, withdraw, and obtain
the balance. The dispatch function just retrieves the appropriate function from the dispatch dictionary. We can then
use an account as follows:

>>> a = account(33)
>>> a('get_balance')()
33
>>> a('deposit')(4)
37
>>> a('withdraw')(7)
30
>>> a('withdraw')(77)
'Insufficient funds'

Compare this to the interface provided by a bank account implemented as a Python class:

>>> a = Account(33)
>>> a.get_balance()
33
>>> a.deposit(4)
37
>>> a.withdraw(7)
30
>>> a.withdraw(77)
'Insufficient funds'

17.5. Dispatch Dictionaries 158

Programming Language Principles and Paradigms, Release 0.4

Once again, our implementation provides a very similar interface with only minor differences in syntax.

We have now constructed a hierarchy of ADTs using functions, progressing from immutable pairs to mutable pairs, lists,
and dictionaries, finally arriving at a message-passing abstraction that bears striking resemblance to object-oriented
programming. Next, we will examine language-level mechanisms for defining ADTs in the object-oriented paradigm.

17.5. Dispatch Dictionaries 159

CHAPTER

EIGHTEEN

OBJECT-ORIENTED PROGRAMMING

Object-oriented languages provide mechanisms for defining abstract data types in a systematic manner. Such languages
provide means for the following features of ADTs:

• Encapsulation: The ability to bundle together the data of an ADT along with the functions that operate on that
data1.

• Information hiding: The ability to restrict access to implementation details of an ADT.

• Inheritance: The ability to reuse code of an existing ADT when defining another ADT. This includes implemen-
tation inheritance, where the actual implementation of an ADT is reused, and interface inheritance, where the
new ADT merely supports the same interface as the existing ADT.

• Subtype polymorphism: The ability to use an instance of a derived ADT where a base ADT is expected. This
requires some form of dynamic binding or dynamic dispatch, where the derived ADT’s functionality is used at
runtime when the base ADT’s version is expected at compile time.

In object-oriented languages, an ADT is specified by a class, which defines the pattern to be used in instantiating objects
of the class.

18.1 Members

An object is composed of individual pieces of data, variously called fields, attributes, or data members. Functions that
are defined within a class and operate on the contents of an object are often called methods, or in C++ terminology,
member functions.

class Foo {
public:
int x;
Foo(int x_);
int baz(int y);

};

In the example above, x is a field, Foo() is a constructor that is called to initialize a new object of type Foo, and baz()
is a member function.

A class may also have fields associated with it that are shared among all instances of the class. These are often called
static fields or class attributes, and they are often specified with the static keyword, as in the following Java code:

class Foo {
static int bar = 3;

}

1 The term “encapsulation” is often used to encompass information hiding as well.

160

Programming Language Principles and Paradigms, Release 0.4

A static field usually can be accessed through the class or through an instance:

System.out.println(Foo.bar); // access through class
System.out.println(new Foo().bar); // access through instance

The following is the same example in C++:

class Foo {
public:
static int bar;

};

int Foo::bar = 3;

int main() {
cout << Foo::bar << endl;
cout << Foo().bar << endl;

}

C++ requires an out-of-line definition for static data members that are not compile-time constants to designate a storage
location. Class members are accessed using the scope-resolution operator (::).

Finally, the following demonstrates this example in Python:

class Foo:
bar = 3

print(Foo.bar)
print(Foo().bar)

Attributes that are defined directly within a class definition are automatically class attributes.

18.2 Access Control

Information hiding requires the ability to restrict access to the members of a class or object. Many object-oriented
languages provide a mechanism for restricting accessibility (also called visibility) of members. Common categories of
access include:

• allowing only an object itself to access its own data

• allowing all code in a class to access any data of the class or its instances

• allowing the data inherited from a base class to be accessed by code in a derived class

• allowing the data of a class and its instances to be accessed by all code in the same package or module

• allowing all code in a program to access the data of a class and its instances

In C++, Java, and C#, the public keyword grants all code access to a member, while the private keyword restricts
access to the class itself. In C++ and C#, the protected keyword grants access to inherited data to derived classes,
while in Java, it additionally grants access to all code in the same package. In C#, the internal keyword grants access
to a package. In Java, a member that does not have an access qualifier is accessible to other code in the same package
but not to derived classes in other packages.

In many dynamic languages, such as Smalltalk and Python, all members have public accessibility. In Ruby, fields of
an object are only accessible to the object itself and not to other objects of the same class.

18.2. Access Control 161

Programming Language Principles and Paradigms, Release 0.4

Table 18.1 summarizes the access control provided by several languages.

Table 18.1: Access control in different languages

Access public private C++ protected Java protected C# internal/Java default Python
Same instance X X X X X X
Same class X X X X X X
Derived classes X X X X
Same package X X X X
Global access X X

A subtlety arises when it comes to the protected access level. Suppose a class Derived derives from Base, and
Base defines a protected member x. Is Derived allowed to access the x member of instances of Base that are not
also instances of Derived? The following C++ code demonstrates this case:

class Base {
protected:
int x = 4;

};

class Derived : public Base {
public:
void foo(Base *b, Derived *d) {
cout << b->x << endl; // ERROR
cout << d->x << endl; // OK

}
};

C++, C#, and Java all prohibit Derived from accessing the protected member x of Base, unless the access is through
an instance that is also of type Derived. Thus, the expression b->x above is erroneous, while d->x is permitted.

18.3 Kinds of Methods

Methods that operate on instances of a class generally take in the instance itself as a parameter. Often, this parameter
is named self or this, either by convention or as a language keyword. In most languages, the instance is an implicit
parameter, as in the following C++ code:

class Foo {
public:
int x;

int get_x() {
return this->x;

}
};

In many languages, the this qualification on a member can be elided, though it is necessary if another variable hides
the declaration of the member:

class Bar {
public:
int x, y;

(continues on next page)

18.3. Kinds of Methods 162

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

void baz(int x) {
cout << this->x << endl; // x hidden by parameter
cout << y << endl; // y not hidden, so this-> not needed

}
};

In Python, the instance must be an explicit parameter, conventionally named self. The self qualification cannot be
elided:

class Foo:
def __init__(self, x):

self.x = x

def get_x(self):
return self.x

In most languages, method-call syntax implicitly passes the instance as the implicit or explicit instance parameter, as
the instance is syntactically provided as part of the method call:

f = Foo(3)
f.get_x() # passes f as self parameter to get_x()

Most languages also provide a means for defining static methods, which do not operate on an instance but can generally
be called on a class or instance. In languages in the C++ family, the static keyword specifies a static method. In
Python, the @staticmethod decorator accomplishes this:

class Baz:
@staticmethod
def name():

return 'Baz'

print(Baz.name())
print(Baz().name())

Without the @staticmethod decorator, the function name() cannot be called on an instance of Baz. Python also has a
@classmethod decorator that allows definition of a static-like method that takes in the class itself as the first argument:

class Baz:
@classmethod
def name(cls):

return cls.__name__

class Fie(Baz):
pass

print(Baz.name()) # prints Baz
print(Baz().name()) # prints Baz
print(Fie.name()) # prints Fie
print(Fie().name()) # prints Fie

Some languages, such as C# and Python, provide a mechanism for defining property methods that act as accessors to
fields. Such a method is called using field-access syntax and is useful for controlling access to a field. A property

18.3. Kinds of Methods 163

Programming Language Principles and Paradigms, Release 0.4

method can also be used to provide a field interface for data that must be computed on the fly, such as in the following
complex-number representation:

import math

class Complex(object):
def __init__(self, real, imag):

self.real = real
self.imag = imag

@property
def magnitude(self):

return (self.real ** 2 + self.imag ** 2) ** 0.5

@magnitude.setter
def magnitude(self, mag):

old_angle = self.angle
self.real = mag * math.cos(old_angle)
self.imag = mag * math.sin(old_angle)

@property
def angle(self):

return math.atan2(self.imag, self.real)

@angle.setter
def angle(self, ang):

old_magnitude = self.magnitude
self.real = old_magnitude * math.cos(ang)
self.imag = old_magnitude * math.sin(ang)

The @property decorator defines a getter, followed by which the @<method>.setter decorator can be used to define
a setter, where <method> is the name of the function used with @property. With magnitude and angle defined as
properties with both getters and setters, we can use them as follows:

>>> c = Complex(1, math.sqrt(3))
>>> c.magnitude
2.0
>>> c.angle / math.pi
0.3333333333333333
>>> c.magnitude = math.sqrt(2)
>>> c.angle = math.pi / 4
>>> c.real
1.0000000000000002
>>> c.imag
1.0

Thus, property methods allow the interface of a field to be abstracted from its implementation. In the example of
Complex, we could change the implementation such that magnitude and angle are stored as standard fields and real
and imag are implemented as property methods. This would not change the interface of Complex at all, abstracting
the implementation change from outside code.

18.3. Kinds of Methods 164

Programming Language Principles and Paradigms, Release 0.4

18.4 Nested and Local Classes

Some object-oriented languages allow a nested class to be defined within the scope of another class. This enables a
helper class to be encapsulated within the scope of an outer class, enabling it to be hidden from users of the outer class.
A language may also allow a class to be defined at local scope as well.

Languages in which classes are first-class entities allow the creation of new classes at runtime. Generally, such a
creation may happen at any scope, and the class has access to its definition environment (i.e. it has static scope).
Python is an example of such a language.

In C++, nested and local classes act as any other classes, except that they have access to the private members of the
enclosing class. On the other hand, the enclosing class must be declared as a friend of a nested class in order to
have access to the private members of the nested class. A local class does not have access to the local variables in the
enclosing stack frame.

Java provides more flexibility in its nested and local classes. Local classes have access to local variables that are
effectively final, meaning that they are only assigned once and never modified. When defined in a non-static scope,
both nested and local classes are associated with an actual instance of the enclosing class and have direct access to its
fields:

class Outer {
private int x;

Outer(int x) {
this.x = x;

}

class Inner {
private int y;

Inner(int y) {
this.y = y;

}

int get() {
return x + y;

}
}

}

class Main {
public static void main(String[] args) {
Outer out = new Outer(3);
Outer.Inner inn = out.new Inner(4);
System.out.println(inn.get());

}
}

In Java, nested and local classes have access to private members of the enclosing class, and the enclosing class has
access to the private members of a nested class. The definition of a nested class can be prefaced with the static
keyword to dissociate it from any instance of the enclosing class.

18.4. Nested and Local Classes 165

Programming Language Principles and Paradigms, Release 0.4

18.5 Implementation Strategies

In concept, object-oriented programming is built around the idea of passing messages to objects, which then respond
in a manner appropriate for the object. Access to a member can be thought of as sending a message to the object.
Languages differ in whether or not the set of messages an object responds to is fixed at compile time, as well as
whether the actual message that is passed to an object is fixed at compile time.

In efficiency-oriented languages such as C++ and Java, the set of messages that an object supports is fixed at compile
time and is the same for all instances of a class. Such a language enables objects to be implemented in a manner similar
to records or structs: the fields of an object can be stored contiguously within the memory for the object, with one slot
for each field. Access to a field can then be translated at compile time to a fixed offset into the object, similar to an
offset-based implementation of activation records . As an example, consider the following class in C++:

class Foo {
public:
int x, y;
Foo(int x_, int y_);

};

The fields x and y are stored contiguously within the Foo object, with x at an offset of zero bytes from the beginning of
the Foo object and y at an offset of four bytes, since x takes up four bytes (assuming that sizeof(int) == 4). Figure
18.1 illustrates this layout:

x

y
Foo

0

4

Figure 18.1: Record-based implementation of an object.

Then given a Foo object f, the field access f.x is translated at compile time to an offset of zero from the address of
f, while f.y is translated to an offset of four. No lookup is required at runtime, making such an implementation very
efficient.

In languages that enable a member to be added to a class or even an individual object at runtime, members are usually
stored within a dictionary, analogous to a dictionary-based implementation of activation records. This is similar to the
message-passing scheme demonstrated in the last section. Such a language defines a process for looking up a member.
For example, in Python, accessing an attribute of an object first checks the dictionary for the object before proceeding
to the dictionary for its class:

class Foo:
y = 2

def __init__(self, x):
self.x = x

f = Foo(3)
(continues on next page)

18.5. Implementation Strategies 166

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

print(f.x, f.y, Foo.y) # prints 3 2 2
f.y = 4 # adds binding to instance dictionary
print(f.x, f.y, Foo.y) # prints 3 4 2

The class Foo has a class attribute y, and the constructor creates an instance attribute x. Looking up f.x first looks
in the instance dictionary, finding a binding there. On the other hand, looking up f.y within the first call to print()
does not find y in the instance dictionary, so lookup proceeds to the class dictionary, finding it there. The assignment
f.y = 4 introduces a binding for y in the instance dictionary, so subsequent lookups find y there.

Python actually takes a hybrid approach, using a dictionary by default but allowing a class to specify a record-like
implementation using the special __slots__ attribute. The following is a definition of the Complex class to use this
mechanism:

import math

class Complex(object):
__slots__ = ('real', 'imag')

def __init__(self, real, imag):
self.real = real
self.imag = imag

@property
def magnitude(self):

return (self.real ** 2 + self.imag ** 2) ** 0.5

@magnitude.setter
def magnitude(self, mag):

old_angle = self.angle
self.real = mag * math.cos(old_angle)
self.imag = mag * math.sin(old_angle)

@property
def angle(self):

return math.atan2(self.imag, self.real)

@angle.setter
def angle(self, ang):

old_magnitude = self.magnitude
self.real = old_magnitude * math.cos(ang)
self.imag = old_magnitude * math.sin(ang)

Instances of a class that uses __slots__ no longer store attributes in a dictionary, saving space and providing better
performance. However, they lose the ability of adding attributes to a specific instance at runtime.

Dictionary-based languages usually provide a mechanism for dynamically constructing a message and passing it to an
object, such as the special __getattribute__ method of Python objects:

>>> x = [1, 2, 3]
>>> x.__getattribute__('append')(4)
>>> x
[1, 2, 3, 4]

Java also supports dynamic invocation of messages through a powerful reflection API, which provides a form of runtime

18.5. Implementation Strategies 167

Programming Language Principles and Paradigms, Release 0.4

type information:

import java.lang.reflect.Method;

class Main {
public static void main(String[] args) throws Exception {
String s = "Hello World";
Method m = String.class.getMethod("length", null);
System.out.println(m.invoke(s));

}
}

18.5. Implementation Strategies 168

CHAPTER

NINETEEN

INHERITANCE AND POLYMORPHISM

Inheritance and polymorphism are two key features of object-oriented programming, enabling code reuse as well as
allowing the specialization of behavior based on the dynamic type of an object. Languages differ greatly in the design
choices they make in the specifics of how they support inheritance and polymorphism. In this section, we discuss some
of these design choices as well as how they are typically implemented.

19.1 Types of Inheritance

In Object-Oriented Programming, we alluded to the fact that interface inheritance only reuses the interface of an ADT,
while implementation inheritance reuses the implementation. These two types of inheritance are strongly coupled in
most languages; specifically, implementation inheritance almost always includes interface inheritance as well. C++ is
an exception, allowing fields and methods to be inherited without exposing them as part of the interface of the derived
class.

In particular, C++ supports private, protected, and public inheritance, which designate the accessibility of inherited
members. In private inheritance, all inherited members are made private in the derived class. In protected inheritance,
inherited members that were originally public are made protected, while more restricted members retain their original
accessibility. In public inheritance, all inherited members retain their original accessibility. The general rule is that
the accessibility of an inherited members is the more restrictive of its original accessibility and the type of inheritance.
In keeping with the meaning of private discussed previously, inherited members that were originally private are not
accessible to the derived class itself.

The default inheritance variant is public for classes defined using the struct keyword, while it is private if the class
keyword is used. The programmer can override the default by placing an access modifier in front of the base class, as
in the following:

class A {
public:
void foo();

protected:
void bar();

private:
void baz();

};

class B : public A {
};

class C : protected A {
(continues on next page)

169

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

};

class D : A {
};

In this example, the method foo() is public in B, protected in C, and private in D. Thus, D inherits the implementation
of foo() without exposing it as part of its interface. The method bar() is protected in B and C and private in D.
Finally, the member function baz() is private in all three derived classes, while also being inaccessible to the classes
themselves.

C++ also allows derived classes to delete non-virtual inherited methods.

Some languages allow an interface to be inherited without the implementation, requiring concrete derived classes to
provide their own implementation. A method is abstract (pure virtual in C++ terminology) if no implementation is
provided, and a class is abstract if it has at least one abstract method, whether the abstract method is declared directly
in the class or inherited. In Java, abstract classes must be labeled as such:

abstract class A {
abstract void foo();

}

A class that only has abstract methods is often called an interface, and Java has specific mechanisms for defining and
implementing an interface:

interface I {
void bar();

}

class C extends A implements I {
void foo() {
System.out.println("foo() in C");

}

public void bar() {
System.out.println("bar() in C");

}
}

Abstract methods in Java may have any access level except private, but interface methods are implicitly public. Java
allows a class to implement multiple interfaces, though it only allows it to derive from a single class.

Some languages further decouple inheritance from polymorphism by allowing methods to be inherited without estab-
lishing a parent-child relationship between two classes. The class that defines these methods is called a mixin, and a
mixin can be included from another class to obtain those methods. The use of mixins is particularly common in Ruby.
The following is an example:

class Counter
include Comparable
attr_accessor :count

def initialize()
@count = 0

end

(continues on next page)

19.1. Types of Inheritance 170

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

def increment()
@count += 1

end

def <=>(other)
@count <=> other.count

end
end

c1 = Counter.new()
c2 = Counter.new()
c1.increment()
print c1 == c2
print c1 < c2
print c1 > c2

By including the Comparable mixin, the Counter class obtains comparison methods such as < and <= that use the
general <=> comparison method defined in Counter.

We will see later how to implement mixins in C++ using the curiously recurring template pattern.

19.2 Class Hierarchies

In some languages, such as Java and Python, every class eventually derives from a root class, called Object in Java
and object in Python. This results in a single class hierarchy rooted at the root class. In Java, this hierarchy is a tree,
since Java does not allow multiple inheritance outside of interfaces. Python does allow multiple inheritance, so the
hierarchy is a directed acyclic graph. Other languages, including C++, do not have a root class.

A root class enables code to be written that works on all class-type objects. For example, a Vector<Object> in Java
can hold objects of any type. Because the Object class defines an equals() method, such a data structure can be
searched to find an object that is semantically equal to an item:

Vector<Object> unique(Vector<Object> items) {
Vector<Object> result = new Vector<Object>();
for (Object item : items) {
if (!result.contains(item)) {
result.add(item);

}
}
return result;

}

In this example, the contains() method of Vector<Object> calls the equals() method on an element. Since the
root Object class defines equals(), it is valid to call on an instance of any class.

In contrast, C++ allows void * to hold a pointer to any object, so that a vector<void *> can store pointers to arbitrary
objects. However, a void * does not implement any behavior, so we can only compare such pointers by pointer value
and not whether the actual referenced objects are equal.

19.2. Class Hierarchies 171

Programming Language Principles and Paradigms, Release 0.4

19.3 Method Overriding

The ability to override a method in a derived class is the key to polymorphism in object-oriented programming. Over-
riding requires dynamic binding, where the actual method to be invoked is determined by an object’s dynamic type
rather than the type apparent in the program source.

As we will see shortly, dynamic binding comes at a runtime cost. To avoid this cost wherever possible, instance
methods do not use dynamic binding by default in C++. Instead, an instance method must be designated as virtual in
order for dynamic binding to be used. Java, on the other hand, uses dynamic binding for all instance methods, except
those designated as final in some cases, since they cannot be overridden. Both languages use static binding for static
methods, whether or not they are dispatched through an object.

Dynamically typed languages universally support dynamic binding, since objects do not have a static type. Such lan-
guages include Python and Ruby.

In languages that support method overloading, including C++ and Java, a method generally must have the same param-
eter list as the method it is overriding. Otherwise, the new definition is treated as overloading or hiding the base-class
method instead. This can lead to unexpected behavior, such as the following code in Java:

class Foo {
int x;

Foo(int x) {
this.x = x;

}

public boolean equals(Foo other) {
return x == other.x;

}
}

Vector<Foo> vec = new Vector<Foo>();
vec.add(new Foo(3));
System.out.println(vec.contains(new Foo(3)));

This code, when run, prints out false. The problem is that the equals()method defined in Object has the signature:

public boolean equals(Object other)

The difference in the parameter type causes the equals() that is defined in Foo to be an overload rather than overriding
the inherited method. Combined with the fact that generics in Java do not generate code that is specialized to the type
parameter, this results in the original equals() method being called from the contains() method in Vector.

Java allows a method to be annotated to assert that it is an override, as follows:

@Override
public boolean equals(Foo other) {
return x == other.x;

}

The compiler will then detect that the method does not in fact override a base-class method and will report an error.
C++11 has a similar override keyword that can be placed at the end of a method signature:

virtual void foo(Bar b) override;

19.3. Method Overriding 172

Programming Language Principles and Paradigms, Release 0.4

19.3.1 Covariance and Contravariance

Some statically typed languages, including C++ and Java, permit covariant return types, where the return type of an
overriding method is a derived type of the return type in the overridden method. Such a narrowing is semantically
valid, since a derived object can be used (at least as far as the type system is concerned) where a base type is expected.
The clone() method in Java is an example, where the version in Object returns Object:

class Foo {
int x;

@Override
public Foo clone() {
Foo f = new Foo();
f.x = x;
return f;

}
}

Equally valid semantically for parameter types is contravariance, where an overriding method takes in a base type of
the parameter type in the overridden method. However, in languages that allow overloading, parameter contravariance
results in an ambiguity: is the newly defined method an override of the original method, an overload of the method, or
does it hide the base-class method? Consider the following example in Java:

class Foo {
int foo(Foo other) {
return 0;

}
}

class Bar extends Foo {
int foo(Object other) {
return 1;

}
}

The call to b.foo(arg), where b is of type Bar, results in different behavior depending on the type of arg:

Bar b = new Bar();
System.out.println(b.foo(new Bar())); // prints 0
System.out.println(b.foo(new Object())); // prints 1

Thus, in Java, defining a method with a parameter that is contravariant to the base-class method results in an overload.
On the other hand, in C++, this pattern hides the base-class method:

class Base {
};

class Foo : public Base {
public:
int foo(const Foo &other) const {
return 0;

}
};

(continues on next page)

19.3. Method Overriding 173

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

class Bar : public Foo {
public:
int foo(const Base &other) const {
return 1;

}
};

int main() {
Bar b;
cout << b.foo(Bar()) << endl; // prints 1
cout << b.foo(Base()) << endl; // prints 1

}

In both languages, the derived-class method with contravariant parameters does not override the base-class method.

19.3.2 Accessing Hidden or Overridden Members

In many languages, base-class members that are not overridden but redefined in a derived class are hidden by the
definition in the derived class. This is the case for non-virtual methods in C++, as well as virtual methods that differ in
signature from the method defined in the base class. In Java, on the other hand, a derived-class method with the same
name as a base-class method but a different signature overloads the base-class method rather than override or hide it,
as we saw in Method Overriding.

In record-based languages, redefining a field in a derived class usually results in the derived object containing both the
hidden and the redefined field. In dictionary-based languages, however, objects usually only have a single field for a
given name. Using __slots__ in Python, space is reserved for both the hidden and the redefined field, but field access
always accesses the slot defined in the derived class.

A common pattern in a derived-class method is to add functionality to that of the base-class method that it is overriding
or hiding. In order to avoid repeating code, most languages provide a means of calling the base-class method. In C++,
the scope-resolution operator enables this:

struct A {
void foo() {
cout << "A::foo()" << endl;

}
};

struct B : A {
void foo() {
A::foo();
cout << "B::foo()" << endl;

}
};

More common is some variation of super, as in the following in Java:

class A {
void foo() {
System.out.println("A.foo()");

}
}

(continues on next page)

19.3. Method Overriding 174

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

class B extends A {
void foo() {
super.foo();
System.out.println("B.foo()");

}
}

Python uses similar syntax:

class A:
def foo(self):

print('A.foo()')

class B(A):
def foo(self):

super().foo()
print('B.foo()')

The same mechanisms can be used to access a hidden field, i.e. the scope-resolution operator in C++ and super in
Java. In Python, super() can be used to access hidden static fields; instance fields are not replicated within an object.

Perhaps the most common case where a base class member needs to be accessed is the constructor for the derived class,
where the base-class constructor needs to be invoked. In C++, a base-class constructor can be explicitly invoked from
a constructor’s initializer list:

struct A {
A(int x);

};

struct B : A {
B(int x) : A(x) {}

};

If no explicit call is made to a base-class constructor, a call to the default constructor of the base class is inserted by
the compiler, and it is an error if such a constructor does not exist. The base-class constructor runs before any other
initializers or the body of the derived-class constructor, regardless of where the former appears in the latter’s initializer
list.

In Java, a call to a base-class constructor must be the first statement in a constructor, and the compiler implicitly inserts
a call to the zero-argument base-class constructor if an explicit call is not provided.

class A {
A(int x) {
}

}

class B extends A {
B(int x) {
super(x);

}
}

In Python, a call to a base-class constructor must be made explicitly, and the interpreter does not insert one if it is

19.3. Method Overriding 175

Programming Language Principles and Paradigms, Release 0.4

missing.

class A:
def __init__(self, x):

pass

class B(A):
def __init__(self, x):

super().__init__(x)

19.4 Implementing Dynamic Binding

In dictionary-based languages such as Python, dynamic binding is straightforward to implement with a sequence of
dictionary lookups at runtime. In particular, when accessing an attribute of an object in Python, Python first searches
the dictionary for the object itself. If it is not found, then it searches the dictionary for the object’s class. If the attribute
is still not found, it proceeds to the base-class dictionaries.

In record-based languages, however, efficiency is a primary concern, and dynamic name lookup can be prohibitively
expensive. Instead, such languages commonly store pointers to methods that need to be looked up dynamically in a
structure called a virtual table, or vtable for short. This name is a reflection of the term “virtual” in C++, which denotes
methods that are dynamically bound.

As an example, consider the following C++ code:

struct A {
int x;
double y;
virtual void a();
virtual int b(int i);
virtual void c(double d);
void f();

};

struct B : A {
int z;
char w;
virtual void d();
virtual double e();
virtual int b(int i);
void f();

};

The storage for an object of type A contains as its first item a pointer to the vtable for class A, which is then followed by
entries for fields x and y. The vtable for A contains pointers to each of its virtual methods in order, as shown in Figure
19.1.

Neither the storage for an object of type A nor the vtable for A contains a pointer to A::f: the latter is not a virtual
method and so is not dynamically bound. Instead, the compiler can generate a direct dispatch to A::f when the method
is called on an object whose static type is A.

The storage for an object of type B also contains a vtable pointer as its first item. This is then followed by inherited
fields, after which are slots for fields introduced by B. The vtable for B contains pointers for each of its methods. First
come methods inherited from A or overridden, in the same order as in the vtable for A. Then the new methods introduced
by B follow, as illustrated in Figure 19.2.

19.4. Implementing Dynamic Binding 176

Programming Language Principles and Paradigms, Release 0.4

x

y

A's	vtable

A::a

A::b

A::c
A

Object

Figure 19.1: A record-based implementation of an object with dynamically bound methods stores a vtable pointer at
the beginning of the object. The vtable stores pointers to each dynamically bound method.

x

y

z

w

B's	vtable

A::a

B::b

A::c

B::d

B::e
B

Object

Figure 19.2: The layout of a derived-class object consists of a vtable pointer, then inherited fields, followed by fields
introduced by the derived class. The vtable for the derived class begins with the same layout as that of the base class,
followed by new methods introduced by the derived class.

19.4. Implementing Dynamic Binding 177

Programming Language Principles and Paradigms, Release 0.4

As mentioned previously, fields are statically bound, but fields that are inherited from A are at the same offsets in both
A and B. Thus, the compiler can translate a field access to an offset into an object, and the same offset will work for a
base class and its derived classes. We can observe this by computing the offset of the member x in an A and a B from
the beginning of the object:

A a;
B b;
cout << (((uintptr_t) &a.x) - (uintptr_t) &a) << endl;
cout << (((uintptr_t) &b.x) - (uintptr_t) &b) << endl;

Converting a pointer to a uintptr_t results in its address value. Running the above code results in the same offset of
8 using Clang on a 64-bit Intel machine, reflecting the size of the vtable pointer that comes before x.

Dynamically bound methods, on the other hand, require an indirection. A method override has the same offset in a
derived class’s vtable as the overridden method in the base class’s vtable. In the example above, B::b is located in the
second entry in the vtable for B, which is the same offset as where A::b is stored in the vtable for A. Thus, the compiler
can translate a dynamic method call to a dereference into the object to get to its vtable, a fixed offset into the vtable,
followed by another dereference to get to the actual code pointer. As an example, consider the following:

A *aptr = new B;
aptr->b();

The following pseudocode demonstrates the process of calling b():

// extract vtable pointer from start of object
vtable_ptr = aptr-><vtable>;
// index into vtable at statically computed offset for b
func_ptr = vtable_ptr[1];
// call function, passing the implicit this parameter
func_ptr(aptr);

This process requires two dereferences to obtain the code location of the dynamically bound method, one to extract the
vtable pointer from the object and another to index into the vtable. In contrast, the code location for a statically bound
method call can be determined at compile time, which is more efficient than the two runtime dereferences required in
dynamic binding.

19.4.1 Full Lookup and Dispatch Process

In general, the receiver of a method call in a statically typed language can have a dynamic type that differs from its
static type. For example, in the code below, the receivers of the first two method calls have static type A while their
dynamic type is B:

A *aptr = new B;
A &aref = *aptr;
B *bptr = new B;
aptr->b(); // receiver has static type A, dynamic type B
aref.f(); // receiver has static type A, dynamic type B
bptr->b(); // receiver has static type B, dynamic type B

The following is the general pattern that statically typed languages use to look up the target method and generate a
dispatch to the appropriate code:

1. Look up the member (e.g. b in the case of aptr->b()) in the static type of the receiver, performing function-
overload resolution if necessary to determine which method is being called.

19.4. Implementing Dynamic Binding 178

Programming Language Principles and Paradigms, Release 0.4

2. If the resolved method is non-virtual, then generate a direct dispatch to the code for that method. For example,
in the call aref.f() above, a direct dispatch to A::f would be generated since A::f, the result of the lookup,
is non-virtual.

3. If the resolved method is virtual, then determine its offset in the vtable of the static type. In the case of
aptr->b(), the resolved method is A::b, which is the second entry in the vtable for A. Then an indirect dispatch
is generated, as described previously:

vtable_ptr = aptr-><vtable>;
func_ptr = vtable_ptr[1];
func_ptr(aptr);

19.5 Multiple Inheritance

Some languages allow a class to directly inherit from multiple base classes. This includes the limited form enabled by
Java’s interfaces, as well as the fully general multiple inheritance provided by Python and C++. Multiple inheritance
raises several semantic and implementation issues that do not occur in single inheritance.

19.5.1 Dictionary-Based Implementation

In Python, where instance fields are stored in an object’s dictionary by default, there is no concept of inheriting instance
fields from a base class. Thus, in the absence of __slots__, multiple inheritance poses no problems for looking up
an instance field. On the other hand, methods are generally stored in the dictionary for a class, along with static fields.
Thus, a key question raised by multiple inheritance is in which order to search base-class dictionaries if an attribute is
not found in the dictionary for an object or its class. The solution is non-trivial, as can be seen in the example below:

class Animal:
def defend(self):

print('run away!')

class Insect(Animal):
pass

class WingedAnimal(Animal):
def defend(self):

print('fly away!')

class Butterfly(Insect, WingedAnimal):
pass

If defend() is called on a Butterfly, there are several orders in which the method can be looked up among its
base classes. A naive depth-first search would result in Animal.defend, but WingedAnimal.defend is in a sense
“more derived” than Animal.defend and should be preferred in most cases. The actual algorithm used by Python is
C3 linearization, which results in an order that preserves certain important aspects of the inheritance hierarchy. The
details are beyond the scope of this text, but the result is that WingedAnimal.defend is used:

>>> Butterfly().defend()
fly away!

19.5. Multiple Inheritance 179

https://en.wikipedia.org/wiki/C3_linearization

Programming Language Principles and Paradigms, Release 0.4

19.5.2 Record-Based Implementation

In a record-based implementation, multiple inheritance makes it impossible to ensure that a field is stored at a consistent
offset from the beginning of an object. Consider the following C++ code:

struct A {
int x;
virtual void a();
virtual void b();

};

struct B {
int y;
virtual void c();
virtual void d();

};

struct C : A, B {
int z;
virtual void a();
virtual void c();
virtual void e();

};

In objects of type A, the field x is stored in the first entry after the vtable pointer. Similarly, y in B is stored in the
first entry. With C deriving from both A and B, only one of those fields can be stored in the first entry for C. A similar
problem occurs for method entries in a vtable.

Python classes that define __slots__ suffer the same problem, as in the following:

class A:
__slots__ = 'x'

class B:
__slots__ = 'y'

class C(A, B):
pass

Python’s solution to this conflict is to make it illegal for a class to derive from multiple base classes that define
__slots__.

C++, on the other hand, does permit code like the above. The solution that C++ uses is to combine different views of
an object that has multiple base classes within the storage for the object. In the example above, we would have one
view of the object from the perspective of C and A, and a separate view from the perspective of B, each with its own
vtable. Figure 19.3 illustrates the two views.

Now the view used depends on the type of pointer or reference that refers to a C object:

C *c_ptr = new C(); // uses view A, C
A *a_ptr = c_ptr; // uses view A, C
B *b_ptr = c_ptr; // uses view B

When a pointer of type C * is converted to one of type B *, the compiler automatically adjusts the pointer to use the
view for B. Then the offset for y from that view is the same as that of an object of type B. Similarly, the methods that

19.5. Multiple Inheritance 180

Programming Language Principles and Paradigms, Release 0.4

x

A's	vtable

A::a

A::b

x

y

z

C's	vtable
view	A,	C
C::a

A::b

C::c

B::d

C::e

y

B's	vtable

B::c

B::d

C's	vtable
view	B
C::c

B::d

view A, C

view B

A B

C

c_ptr a_ptr b_ptr

Object Object

Object

Figure 19.3: Multiple inheritance in a record-based implementation results in multiple views of an object, each with
its own vtable.

19.5. Multiple Inheritance 181

Programming Language Principles and Paradigms, Release 0.4

are inherited from B or overridden are located at the same vtable offsets in the vtable for view B as in the vtable for an
object of type B itself. The same properties hold for the A view and objects of actual type A.

The problem is not yet completely solved, however. What happens when we invoke an overridden method through the
B view? Specifically, consider the following:

void C::c() {
cout << z;

}

C *c_ptr = new C();
B *b_ptr = c_ptr;
c_ptr->c();
b_ptr->c();

If the code generated for C::c() assumes an offset for z based on the C view, then that same offset is not valid for the
B view. In particular, z is two vtable pointers and two ints away from the beginning of the C view, but it is one vtable
pointer and one int away in the B view. We need to arrange for the view of the object to be the C view in the body of
C::c(), even when the method is invoked through a B pointer. One way to do this is to store offsets in vtable entries
that designate how to change the pointer when the given method is invoked, as in Figure 19.4.

c_ptr

C::c

this

x

A's vtable

A::a 0

A::b 0

x

y

z

C's vtable
view A, C

C::a 0

A::b 0

C::c 0

B::d off

C::e 0

y

B's vtable

B::c 0

B::d 0

C's vtable
view B

C::c -off

B::d 0

view A, C

view B

A B

C

b_ptr

off

Object Object

Object

Figure 19.4: Calling a base-class method on an object that uses multiple inheritance may require a this-pointer correc-
tion to switch from one view of the object to another.

Now, when the entry for C::c is looked up in C‘s vtable for view B, the this pointer in C::c should be corrected by
-off before it is invoked, where off is the distance between the C and B views of an object of type C. This will ensure

19.5. Multiple Inheritance 182

Programming Language Principles and Paradigms, Release 0.4

that C::c receives the C view of the object.

In practice, a thunk (a compiler-generated function) is often used to both perform this correction and call the target
method. The vtable entry for the method can then store a pointer to the thunk, and no offset need be stored in the
vtable. This avoids replicating the correction code everywhere a method is called.

Another complication arises when multiple base classes define the same function, as in the Python example above. The
following is the same example in C++:

class Animal {
public:
void defend() const {
cout << "run away!" << endl;

}
};

class Insect : public Animal {
};

class WingedAnimal : public Animal {
public:
void defend() const {
cout << "fly away!" << endl;

}
};

class Butterfly : public Insect, public WingedAnimal {
};

A call to defend() on a Butterfly object can resolve to either the version in Animal or WingedAnimal. Vtables
alone cannot solve this problem, and a more involved dynamic lookup process such as C3 linearization would be
required instead. However, C++ considers such a method call to be ambiguous and will produce a compile-time error
if the call is attempted. Instead, C++ requires the programmer to select a specific version using the scope-resolution
operator:

Butterfly bf;
bf.WingedAnimal::defend();

A final consideration in record-based implementations is how to handle the diamond problem, where a single class
occurs multiple times as the base class for another class. In the example above, Butterfly derives from Animal
twice, once through Insect and once through WingedAnimal. If Animal defines fields, should a Butterfly object
contain a single copy of the fields inherited from Animal, or should there be two copies? Different situations may call
for different approaches, and C++ allows both. The default is replication, but a shared copy of Animal can be specified
using virtual inheritance:

class Animal {
std::string name;

};

class Insect : public virtual Animal {
int i;

};

class WingedAnimal : public virtual Animal {
int w;

(continues on next page)

19.5. Multiple Inheritance 183

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

};

class Butterfly : public Insect, public WingedAnimal {
};

Virtual inheritance is commonly implemented by introducing indirection to access data members of the virtual base
class, in a manner similar to vtables and vtable pointers. Figure Figure 19.5 illustrates one possible implementation of
the class hierarchy above with virtual inheritance.

w

i

name
Butterfly

w

name
WingedAnimal

i

name
Insect

name
Animal

view Butterfly,
WingedAnimal

view Insect

view Animal

Figure 19.5: Virtual inheritance uses indirection to avoid replicating a base-class sub-object. Both Insect and
WingedAnimal have a pointer that refers to the Animal sub-object. Then their common Butterfly derived class
has two pointers that point to the same Animal sub-object.

As this example demonstrates, the intermediate classes Insect and WingedAnimal are the ones that must declare
Animal as a virtual base class, even though it is the class Butterfly that actually gives rise to the diamond problem.
This implies that the writer of the intermediate classes must know a priori that derived classes may run into the diamond
problem. Thus, to some degree, this breaks the abstraction barrier between base and derived classes.

19.5. Multiple Inheritance 184

CHAPTER

TWENTY

STATIC ANALYSIS

In processing a program, a compiler performs static analysis on the source code without actually running the program.
Analysis is done to detect bugs in programs as well as to determine information that can be used to generate optimized
code. However, as demonstrated by Rice’s theorem, the general problem of static analysis of the behavior of a program
written in a Turing-complete language is undecidable, meaning that it is not solvable by a computer. Thus, program
analysis on Turing-complete languages can only approximate the answer, and there will always be cases where the
result determined by the analysis is incorrect.

In designing an analysis, we usually make the choice between the analysis being sound or complete, which characterizes
where the analysis may produce an incorrect result:

• A sound analysis only accepts programs that are correct with respect to the behavior being analyzed. If a program
is incorrect, the analysis is guaranteed to reject it. On the other hand, if a program is correct, it is possible for
the analysis to reject it, resulting in false negatives. Since a sound analysis only accepts correct programs, if a
program passes the analysis, we know that it must be correct. However, if a program fails the analysis, it may or
may not be correct.

• A complete analysis accepts all programs that are correct with respect to the behavior being analyzed. If a
program is incorrect, it is possible for the analysis to accept it, resulting in false positives. If a program fails the
analysis, it must be erroneous, but if the program passes the analysis, it may or may not be correct.

It is often the case that static analyses are designed to be sound, while dynamic (runtime) analyses are typically designed
to be complete.

An analysis cannot be both sound and complete, but it is possible for an analysis to be neither. In such a case, it produces
both false positives and false negatives, which is undesirable. However, in practice, real-world analyses often end up
being neither sound nor complete due to the complexity of the problems they are trying to solve.

We proceed to discuss two common forms of static analysis, on types and on control flow.

20.1 Types

In Formal Type Systems, we explored the theoretical underpinnings of types and type checking. Here, we take a less
formal look at how languages handle types, reviewing some concepts from type checking along the way.

In most programming languages, expressions and objects have a type associated with them. An object’s type determines
how its data are interpreted; all data are represented as bits, and it is a datum’s type that determines the meaning of those
bits. Types also prevent common errors, such as attempting to perform a semantically invalid operation like adding a
floating-point number and an array. For languages in which types of variables and functions are specified in the source
code, they also serve as useful documentation concerning for what a variable or function is used. In languages that
support ad-hoc polymorphism in the form of operator or function overloading, types determine the specific operation
to be applied to the input data. Finally, types enable compilers to generate code that is specialized to the type of an
object or expression.

185

https://en.wikipedia.org/wiki/Rice%27s_theorem

Programming Language Principles and Paradigms, Release 0.4

Compilers perform type checking to ensure that types are used in semantically valid ways in a program. Languages
that enable static analysis to perform type checking at compile time are statically typed, while those that can only be
checked at runtime are dynamically typed. Many languages use a mixture of static and dynamic type checking.

Languages often provide a predefined set of primitive types, such as integers, floating-point numbers, and characters,
as well as a mechanism for constructing composite types whose components, or fields, are simpler types. Common
examples are arrays, lists, and records, the latter of which are known as structs in C and C++.

20.1.1 Type Equivalence

In some languages, composite types are distinguished by their structure, so that all types with the same structure are
considered to be equivalent. This strategy is called structural equivalence, and under this scheme, the following two
types (using C-like syntax) would be equivalent:

record A {
int a;
int b;

};

record B {
int a;
int b;

};

In a handful of languages, such as ML, reordering the fields does not affect type equivalence. Thus, a type such as the
following would also be equivalent:

record C {
int b;
int a;

};

Most modern languages, on the other hand, use name equivalence, which distinguishes between different occurrences
of definitions within a program. Under name equivalence, the types A and B above would be considered distinct.

Some languages allow aliases to be defined for an existing type, such as the following declarations in C++:

typedef double weight;
using height = double;

Under strict name equivalence, aliases are considered distinct types, so that weight and height are not equivalent.
This can prevent errors involving inadvertently interchanging types that alias the same underlying type but are seman-
tically distinct, as in the following involving weight and height:

height h = weight(200.);

The languages in the C family, however, have loose name equivalence, so that aliases are considered equivalent to each
other and to the original type. The code above is permitted under loose name equivalence.

20.1. Types 186

Programming Language Principles and Paradigms, Release 0.4

20.1.2 Type Compatibility

In most languages, strict equivalence of types is not required in order for the types to be used in the same context.
Rather, most languages specify type compatibility rules that determine when one type can be used where another one
is expected.

Subtype polymorphism is one example of type compatibility. Languages that support subtypes, such as those that
support the object-oriented paradigm, allow an object of a derived type to be used where an object of a base type is
expected.

In other contexts, a language may allow a type to be used where another is expected by converting a value of the former
type to the latter. Such a conversion, when done implicitly, is called a type coercion. A common example is when
performing an arithmetic operation on different numeric types. In an expression such as a + b, if one of the operands
has integral type and the other has floating-point type, most languages coerce the integral value to floating-point before
performing the addition. Languages usually specify rules for which numeric types are coerced, or promoted, to others.
A few languages, such as C++, include a mechanism for defining type coercions on user-defined types.

Some languages allow coercion when initializing or assigning an object with a value from a different type. For numeric
types, some languages only allow initialization or assignment that performs a coercion that follows the type promotion
rules. For example, in Java, coercing an int value to a double is allowed, while the latter is prohibited:

int x = 3.4; // error
double y = 3; // OK

The promotion rules are often designed to avoid loss of information. In particular, converting a double value to an
int loses information about the fractional part of the value. In other languages, however, such as C and C++, lossy
coercions are permitted, and both definitions above would be accepted.

Another common example of coercion that we’ve already seen is that of l-values to r-values, where an r-value is ex-
pected.

Languages with type qualifiers specify rules for when a type with one qualification can be coerced to the same type
with a different qualification. For example, C++ specifies when const and non-const types can be coerced to each
other. In particular, a non-const l-value can be coerced to a const l-value, but the reverse is not allowed without
an explicit const_cast. On the other hand, a const l-value can be coerced to a non-const r-value. The following
illustrates some examples:

int a = 3;
const int b = a; // OK: l-value to r-value
a = b; // OK: const l-value to r-value
int &c = a; // OK: no coercion
int &d = b; // ERROR: const l-value to non-const l-value
const int &e = a; // OK: non-const l-value to const l-value

In order to check the types in a program, a strongly typed language determines the type of every expression in the
program. For example, in the compound expression a + b + c, the type of the subexpression a + b must be known
in order to determine what operation to apply to its result and c, whether or not a coercion is necessary or permitted.
In the case of a function-call expression, the type of the expression is the return type of the function. In the case of an
operator, the language defines what the type of the expression is based on the types of the operands.

The following is an example in C++:

cout << ("Weight is " + to_string(10) + " grams") << endl;

The to_string() function returns a string, so that is the type of the expression to_string(10). Applying the +
operator to a string and a string (character-array) literal in turn results in string. Applying the << operator to an
ostream& and a string results in an ostream&. Lastly, endl is a function that is an I/O manipulator, and applying
<< to an ostream& and such a function also produces an ostream&.

20.1. Types 187

Programming Language Principles and Paradigms, Release 0.4

A particular non-trivial case is that of the conditional expression in languages that use static typing. Consider the
following example in C++:

int x = 3;
double y = 3.4;
rand() < RAND_MAX / 2 ? x : x + 1;
rand() < RAND_MAX / 2 ? x : y;

What are the types of the conditional expression? In the first case, both options are of type int, so the result should
be of type int. In the second case, however, one option is of type int while the other is of type double. C++ uses a
complex set of rules to determine which of the two types can be coerced to the other, and the coercion rules here differ
from those in other contexts. The expression is only valid if exactly one of the types can be coerced to the other. In this
case, the resulting expression has type double.

20.1.3 Type Inference

Since the type of each expression is not specified in source code, compilers perform type inference to compute their
types. Some languages allow programmers to make use of the type-inference facilities of the compiler by allowing
types to be elided from declarations if they can be inferred. Many modern statically typed languages allow types to be
elided completely in certain contexts.

As an example, we have already seen that Java and C++ allow the return type to be elided from a lambda expression,
and that Java also allows the parameter types to be elided:

public static IntPredicate makeGreaterThan(int threshold) {
return value -> value > threshold;

}

We have also seen that C++ allows the type of a variable to be deduced with the auto keyword:

int x = 3;
auto y = x; // deduced to have type int
auto &z = x; // deduced to have type int &

The rules for type deduction in C++ have complex interactions with reference types, as illustrated above. We will not
consider them here.

The auto keyword requires that a variable be initialized at declaration, so that the type can be deduced from the
initializer. There are cases where this is not possible. Consider the following class template:

template<typename T, typename U>
class Foo {
T a;
U b;
??? c; // type of a + b

};

Here, we want the type of Foo::c to be the same as the type of a + b, but without actually initializing it to that value.
In fact, C++ prohibits auto from being used with a non-static class member. Instead, C++ provides the decltype
keyword that computes the type of an expression:

template<typename T, typename U>
class Foo {
T a;

(continues on next page)

20.1. Types 188

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

U b;
decltype(a + b) c; // type of a + b

};

20.2 Control-Flow Analysis

Compilers often perform analysis on the flow of control or data through a program in order to provide early detection
of bugs as well as to optimize generated code. Such an analysis is referred to as control-flow or data-flow analysis.
Here, we consider a few common examples of control-flow analysis.

Many imperative languages allow variables to be declared without being explicitly initialized. Some languages specify
semantics for default initialization. In C and C++, however, variables of primitive type have undefined values upon
default initialization, so the behavior of a program that uses such a variable is undefined. Other languages, such as
Java, reject programs in which it cannot be proven that a variable has been initialized before being used. The compiler
analyzes the source code to determine whether or not a control-flow path exists that may result in the use of a variable
without initialization. This analysis is conservative, so that the standard Java compiler rejects the following code:

class Foo {
public static void main(String[] args) {
int i;
if (args.length > 0) {
i = args.length;

}
if (args.length <= 0) {
i = 0;

}
System.out.println(i);

}
}

Even though it may seem obvious that the body of one of the conditionals must be executed, the compiler is unable
to determine that this is the case. Instead, it conservatively assumes that it is possible for neither conditional test to
succeed, so that i may be used uninitialized. Thus, the compiler reports an error like the following:

foo.java:10: error: variable i might not have been initialized
System.out.println(i);

^
1 error

On the other hand, modifying the code as follows enables the compiler to determine that i must be initialized:

class Foo {
public static void main(String[] args) {
int i;
if (args.length > 0) {
i = args.length;

} else {
i = 0;

}
System.out.println(i);

(continues on next page)

20.2. Control-Flow Analysis 189

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

}
}

Here, the compiler can determine that one of the two branches of the conditional must execute, so that i is always
initialized before use.

Some C and C++ compilers perform the same analysis and report a warning if a default-initialized variable of primitive
type may be used. Java also performs a similar analysis to ensure that final variables are initialized no more than
once.

In languages that require a function to explicitly return an object, a program may have control paths that do not ensure
that a function encounters a return statement before exiting. Compilers often perform an analysis that is analogous
to that of variable initialization in order to ensure that a function reaches a return statement. Consider the following
method in Java:

static int bar(int x) {
if (x > 0) {
return 1;

}
if (x <= 0) {
return 0;

}
}

Once again, the compiler cannot guarantee that one of the conditionals will have its body executed, and it reports an
error such as the following:

bar.java:9: error: missing return statement
}
^

1 error

An equivalent example in C++ produces a warning in some compilers, such as the following in Clang:

bar.cpp:12:1: warning: control may reach end of non-void function
[-Wreturn-type]

}
^
1 warning generated.

In some non-obvious cases, the compiler can guarantee that a return must be reached before a function exits. The
following example succeeds in both the standard Java compiler and in Clang for equivalent C++ code:

static int baz(int x) {
while (true) {
if (x < 0) {
return 0;

}
}

}

Here, the compiler can determine that the only way to exit the loop is through a return, so that the only way to exit the
function is by reaching the return statement.

The same analysis can be used to detect code that will never be reached, and depending on the language and compiler,

20.2. Control-Flow Analysis 190

Programming Language Principles and Paradigms, Release 0.4

this may be considered an error. For example, the following modification to baz() is rejected by the standard Java
compiler:

static int baz(int x) {
while (true) {
if (x < 0) {
return 0;

}
}
return 1;

}

The compiler reports the following error:

baz.java:8: error: unreachable statement
return 1;
^

1 error

In Java, the language explicitly disallows statements that can be proven to be unreachable.

20.2. Control-Flow Analysis 191

CHAPTER

TWENTYONE

DYNAMIC TYPING

In addition to dynamic binding, languages and implementations often make other uses of dynamic type information,
also called runtime type information (RTTI), as well as making it available in some form to programmers.

Many languages provide a mechanism for checking whether or not an object has a specific type at runtime. Depending
on the language, the query type may need to be specified at compile time, particularly if the language does not support
first-class types, or it may be computed at runtime. For example, the following C++ code checks whether the dynamic
type of an object referred to by a base class pointer is of the derived class:

struct A {
virtual void bar() {
}

};

struct B : A {
};

void foo(A *a) {
if (dynamic_cast<B *>(a)) {
cout << "got a B" << endl;

} else {
cout << "not a B" << endl;

}
}

int main() {
A a;
B b;
foo(&a);
foo(&b);

}

The dynamic_cast operation attempts to cast an A * to a B *, which will only succeed if the pointed-to object is
actually an instance of B. If the cast fails, then it produces a null pointer, which has truth value false. C++ also allows
dynamic_cast to be used on references, in which case an exception is thrown upon failure.

In order for dynamic_cast to work, the types involved must define at least one virtual method. This allows an imple-
mentation to use vtable pointers, or entries in the vtable itself, to determine the dynamic type of an object. Types that
do not have virtual methods do not have vtables, and their instances do not include vtable pointers.

C++ also has the typeid operator, which produces an object that contains information about the type of the given
operand. In order to make use of typeid, the <typeinfo> header must be included. The operator works on objects
of any type, as well as types themselves, and the result is an instance of std::type_info, which contains basic
information about the type. The following is an example:

192

Programming Language Principles and Paradigms, Release 0.4

int main() {
const type_info &i1 = typeid(int);
const type_info &i2 = typeid(new A());
const type_info &i3 = typeid(main);
cout << i1.name() << " " << i2.name() << " " << i3.name() << endl;

}

The resulting names are implementation dependent. For example, GCC 5.5 produces i P1A FivE when the code
above is run.

Java supports the instanceof operator, which determines whether or not an object is an instance of the given type at
runtime. Python has the similar isinstance() function, which takes in an object and a type as arguments.

Java also supports an operation similar to typeid in the form of the getClass() method defined on all objects. The
result is an instance of Class, which contains extensive information about the class of the object. Similarly, Python
has a type() function. This returns the actual type of an object, since types are first-class entities in Python.

In Java, all casts on objects are dynamically checked. Rather than producing a null pointer on failure, Java throws a
ClassCastException.

A specific case where Java needs to check the type of an object in its internal implementation is when an item is
stored in an array. Originally, Java did not support parametric polymorphism, so the decision was made to support
polymorphic functions on arrays by making all arrays whose elements are of object type derive from Object[]. This
allowed methods like the following to be defined and called on any array of object type:

static void printAll(Object[] items) {
for (int i = 0; i < items.length; i++) {
System.out.println(items[i]);

}
}

More specifically, Java specifies that A[] is a subtype of B[] if A is a subtype of B.

As an example of where this subtype relation can permit erroneous code, consider the following:

String[] sarray = new String[] { "foo", "bar" };
Object[] oarray = sarray;
oarray[0] = "Hello";
oarray[1] = new Integer(3);
sarray[1].length();

The second line is valid, since a String[] object can be assigned to a variable of type Object[]. The third line
is also valid, since a String object can be stored in an Object[]. The fourth line is valid according to the type
system, since Integer derives from Object, which can be stored in an element of an Object[] variable. However,
Integer does not derive from String, so at runtime, we have an attempt to store an Integer object into an array
of dynamic type String[]. This should be prevented, since we could then call a String method on the element as
in the fifth line. Thus, Java checks the dynamic types of the array and the item being stored at runtime and throws an
ArrayStoreException if they are incompatible.

A better solution to the problem would be to use parametric polymorphism for operations on arrays, rather than making
arrays support subtype polymorphism. Unfortunately, parametric polymorphism was introduced much later in Java’s
existence, leading to a significant body of code that depends on the subtype polymorphism of arrays.

193

CHAPTER

TWENTYTWO

GENERICS

Subtype polymorphism relies on subtype relationships and dynamic binding in order to provide the ability of a single
piece of code to behave according to the dynamic type of an object. In contrast, parameteric polymorphism allows the
same code to operate on different types without relying on either subtype relationships or dynamic binding. Languages
that support parametric polymorphism do so in different ways, and we will examine the different strategies here.

22.1 Implicit Parametric Polymorphism

Many functional languages in the ML family, including OCaml and Haskell, are statically typed but allow the program-
mer to elide types from a function. In such a case, the function is implicitly polymorphic, and the compiler will infer
the types for each use of the function. For example, the following defines a polymorphic max function in OCaml:

let max x y =
if x > y then

x
else

y;;

We can then call the function on two values of the same type:

max 3 4;;
- : int = 4
max 4.1 3.1;;
- : float = 4.1
max "Hello" "World";;
- : string = "World"

22.2 Explicit Parametric Polymorphism

In other languages, a function or type must be explicitly specified as polymorphic. In C++, the template keyword
introduces a polymorphic entity, and the parameters are specified in angle brackets:

template <typename T>
T max(const T &x, const T &y) {
return x > y ? x : y;

}

194

Programming Language Principles and Paradigms, Release 0.4

While the definition of a parametric function must be explicitly denoted as such, in many languages the use of a para-
metric function does not normally require an explicit instantiation. Instead, as in implicit parametric polymorphism,
the compiler uses type inference to determine the appropriate instantiation. Thus, we can use max() as follows:

max(3, 4); // returns 4
max(4.1, 3.1); // returns 4.1
max("Hello"s, "World"s) // returns "World"s

In the last call, we made use of C++14 string literals to compare std::string s rather than character arrays.

With a single template parameter, the compiler cannot infer the type parameter on a call that uses arguments of different
types:

max(3, 4.1); // error

Instead, we can explicitly instantiate max():

max<double>(3, 4.1); // OK

Alternatively, we can modify max() to have separate type parameters for each function parameter. However, with
C++11, we also need to make use of type deduction for the return type:

template <typename T, typename U>
auto max(const T &x, const U &y) -> decltype(x > y ? x : y) {
return x > y ? x : y;

}

As of C++14, the trailing return type can be elided, in which case the return type is deduced from the return statement:

template <typename T, typename U>
auto max(const T &x, const U &y) {
return x > y ? x : y;

}

22.2.1 Non-Type Parameters

In some languages, a generic parameter need not be a type. In particular, Ada allows generics to be parameterized by
values of any type. C++ is more restrictive, allowing a template parameter to be a value of an integral type, enumeration
type, lvalue-reference type, pointer type, or pointer-to-member type. The template parameter must be a compile-time
constant. A specific example of this is std::array, which is declared similar to the following:

template <typename T, int N>
class array;

We can then use it as follows:

array<double, 5> arr;
arr[3] = 4.1;

22.2. Explicit Parametric Polymorphism 195

Programming Language Principles and Paradigms, Release 0.4

22.2.2 Constraints

An entity that supports parametric polymorphism can work with different types, but it is often the case that not every
type is suitable for use in that entity. In the case of the max functions above, it does not make sense to call max on
values of a type that does not support the > operator.

Depending on the language, the constraints on a polymorphic entity can be implicit or explicit. In the case of implicit
constraints, the entity is instantiated for the given type argument, and then the result is checked for correctness. As an
example, if we attempt to call max() on streams in C++, we get an error like the following:

foo.cpp:7:12: error: invalid operands to binary expression
('const std::__1::basic_istream<char>' and
'const std::__1::basic_istream<char>')

return x > y ? x : y;
~ ^ ~

foo.cpp:11:5: note: in instantiation of function template
specialization 'max<std::__1::basic_istream<char> >'
requested here

::max(cin, cin);
^

We then get a lengthy list of all the generic overloads of the operator < that could not be instantiated with a
basic_istream<char>. The inscrutability of error messages produced by C++ compilers upon instantiation fail-
ure is an unavoidable byproduct of deferring type checking until instantiation.

Other languages allow a generic entity to specify explicit constraints on the arguments with which the entity can be
instantiated. Java and C#, in particular, support powerful systems of constraints that can restrict a generic for use with
derived classes of specific types. The code for a generic entity can then be checked once, assuming that the constraints
are satisfied. Then upon instantiating a generic, the type arguments need only be checked against the constraints,
resulting in much cleaner error messages than C++.

We will look at the Java system for generics in more detail shortly.

22.2.3 Implementation

Languages and compilers also differ in the implementation of generics at runtime. In languages with strong support for
dynamic binding, a common implementation strategy is to only produce a single copy of the code for a generic entity,
relying on operations that depend on the type parameter to be dynamically bound to the appropriate implementation.
This is the strategy used by Java and ML.

An alternative implementation is to generate separate code for each instantiation of a generic entity, as is done in C++.
This approach is more flexible, since it does not require there to be a single piece of generated code that works for
any set of type arguments. It is also often more efficient, since it does not rely on dynamic binding. The downside is
that it results in larger executables, a problem that is exacerbated by the fact that the compiler needs access to the full
source of a generic entity when it is being instantiated. This can lead to multiple copies of the same instantiation being
included in the resulting executable.

22.2. Explicit Parametric Polymorphism 196

Programming Language Principles and Paradigms, Release 0.4

22.2.4 Java Generics

We now examine Java’s support for generics in more detail, as there are key differences between how Java and C++
implement generics.

In Java, the basic syntax for using a generic is similar to C++. For example, the following uses the generic
ArrayList<T> type:

ArrayList<String> strings = new ArrayList<String>();
strings.add("Hello");
strings.add("World");
System.out.println(strings.get(1));

Defining a generic type, in its most basic form, also has syntax that is related to C++, except for the distinct lack of the
template keyword:

class Foo<T> {
private T x;

public Foo(T x_in) {
x = x_in;

}

public T get() {
return x;

}
}

A generic function requires its type parameters to be specified prior to the return type, as the return type may use the
type parameter:

static <T> T max(T x, T y) {
return x.compareTo(y) > 0 ? x : y;

}

Unfortunately, this code will fail to compile, since not all objects support the compareTo() method. By default, Java
only allows methods defined on Object to be called from within a generic. The compareTo() method is not defined
in Object but is defined in the following interface in the standard library:

interface Comparable<T> {
int compareTo(T other);

}

Thus, we need to a mechanism for constraining the type parameter of max() be a derived type of Comparable<T>,
so that an object of the type parameter can be compared to another object of the same type. We can do this by adding
extends Comparable<T> to the type parameter when we introduce it:

static <T extends Comparable<T>> T max(T x, T y) {
return x.compareTo(y) > 0 ? x : y;

}

We can modify the Foo class as follows to implement the Comparable<Foo<T>> interface:

class Foo<T> implements Comparable<Foo<T>> {
private T x;

(continues on next page)

22.2. Explicit Parametric Polymorphism 197

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

public Foo(T x_in) {
x = x_in;

}

public T get() {
return x;

}

public int compareTo(Foo<T> other) {
return x.compareTo(other.x);

}
}

To compare a Foo<T> to another Foo<T>, we in turn compare their respective x fields with another call to
compareTo(). Again, we run into the problem that the type parameter T, which is the type of x, may not implement
the compareTo() method. So we have to specify the constraint here as well that T be derived from Comparable<T>:

class Foo<T extends Comparable<T>> implements Comparable<Foo<T>> {
private T x;

public Foo(T x_in) {
x = x_in;

}

public T get() {
return x;

}

public int compareTo(Foo<T> other) {
return x.compareTo(other.x);

}
}

We can now use max() with instantiations of Foo:

Foo<String> f1 = new Foo<String>("Hello");
Foo<String> f2 = new Foo<String>("World");
System.out.println(max(f1, f2).get()); // prints World

A final problem is that an instance of a class may be comparable to an instance of a base class. Consider the following
classes:

class Rectangle implements Comparable<Rectangle> {
private int side1, side2;

public Rectangle(int s1_in, int s2_in) {
side1 = s1_in;
side2 = s2_in;

}

public int area() {
return side1 * side2;

(continues on next page)

22.2. Explicit Parametric Polymorphism 198

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

}

public int compareTo(Rectangle other) {
return area() - other.area();

}
}

class Square extends Rectangle {
public Square(int side) {
super(side, side);

}
}

We can now try to use the Foo generic type with Square, as in:

public static void main(String[] args) {
Foo<Square> f1 = new Foo<Square>(new Square(3));
Foo<Square> f2 = new Foo<Square>(new Square(4));
System.out.println(f1.compareTo(f2));

}

Unfortunately, we get errors like the following:

foo.java:36: error: type argument Square is not within bounds
of type-variable T
Foo<Square> f1 = new Foo<Square>(new Square(3));

^
where T is a type-variable:
T extends Comparable<T> declared in class Foo

The problem is that Square derives from Comparable<Rectangle>, not Comparable<Square> as required by the
type parameter. However, semantically it should not be a problem, since if a Square can be compared to another
Rectangle, it can also be compared to another Square. The solution is to modify the type constraint to allow a type
argument as long as it is comparable to some superclass of the type:

class Foo<T extends Comparable<? super T>>
implements Comparable<Foo<T>> {
...

}

The syntax Comparable<? super T> specifies that the type argument of Comparable can be any type, as long as
it is a supertype of T. Thus, Square satisfies the constraint, since it derives from Comparable<Rectangle>, and
Rectangle is a superclass of Square.

Java implements generics using type erasure. Once a generic has been checked, using any constraints it specifies, and
once all uses have been checked, the generic is replaced with a version that is no longer parameterized, usually with
the type parameters replaced by Object. This prevents a generic from being used directly with primitive types, since
they do not derive from Object. However, Java does allow primitives to be implicitly converted to representations that
derive from Object, at significant efficiency costs.

22.2. Explicit Parametric Polymorphism 199

Programming Language Principles and Paradigms, Release 0.4

22.2.5 Curiously Recurring Template Pattern

In Java, the pattern of a type T deriving from a generic instantiated with T is quite common, as in the Rectangle class
above. This pattern also exists in C++ templates, and it is known as the curiously recurring template pattern (CRTP).

template<class T>
class GenericBase {
...

};

class Derived : public GenericBase<Derived> {
...

};

We can use such a pattern to construct a mixin, as in Ruby’s Comparable mentioned in Types of Inheritance:

template<class T>
class Comparable {
public:
bool operator<(const T &rhs) const {
return compare(rhs) < 0;

}

bool operator<=(const T &rhs) const {
return compare(rhs) <= 0;

}

...

virtual int compare(const T &other) const = 0;
};

The Comparable class template defines the comparison operators in terms of a compare()method, which the derived
class must implement. We can thus implement a counter class that inherits the comparison operators:

class Counter : public Comparable<Counter> {
int count = 0;

public:
void increment() {
++count;

}

void decrement() {
--count;

}

int get_count() const {
return count;

}

virtual int compare(const Counter &other) const override {
return count - other.count;

}
(continues on next page)

22.2. Explicit Parametric Polymorphism 200

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

};

While the code above works, a major drawback of the implementation is that it requires dynamic binding, incurring
the cost of a vtable pointer in every Counter object as well as a vtable lookup for each application of a comparison
operator.

Surprisingly, we can actually eliminate dynamic binding by adding an implicit constraint to the Comparable class
template: an instance of Comparable<T>must also be an instance of T. For example, a Counter object is an instance
of Comparable<Counter>, but of course it is also an instance of Counter. With this constraint, we can perform an
unchecked type cast of a Comparable<T> * down to T *:

template<class T>
class Comparable {
public:
bool operator<(const T &rhs) const {
return static_cast<const T *>(this)->compare(rhs) < 0;

}

...
};

With the type cast, we no longer need to define compare() as a pure virtual method in Comparable. It need only exist
in T, and it may be defined as a non-virtual function:

class Counter : public Comparable<Counter> {
int count = 0;

public:
...

int compare(const Counter &other) const {
return count - other.count;

}
};

The end result is polymorphism without dynamic binding, and it is known as static polymorphism2 or simulated dynamic
binding. The pattern is widely used in Microsoft’s Active Template Library (ATL) and Windows Template Library
(WTL) for development on Windows.

22.3 Duck Typing

Languages that do not have static typing are often implicitly polymorphic. Type information is not available at compile
time, so a function is usable with values of any type that supports the required operations. This is called duck typing:
it doesn’t matter what the type of the value actually is; as long as it looks like a duck and quacks like a duck, it is
considered for all intents and purposes a duck.

As an example, the following is a definition of max() in Python:

def max(x, y):
return x if x > y else y

2 The term “static polymorphism” is also used to mean parametric polymorphism, so the term “simulated dynamic binding” is preferable.

22.3. Duck Typing 201

Programming Language Principles and Paradigms, Release 0.4

The function will work at runtime on any types that support the special __gt__ method, which is called by the >
comparison.

A downside of duck typing is that whether or not a type is considered to support an operation is based solely on the
name of the operation, which may not have the same semantic meaning in different contexts. For example, a run()
method on an Athlete object may tell the athlete to start running in a marathon, while a run() method on a Thread
object may tell it to start executing some code. This can lead to unexpected behavior and confusing errors in duck-typed
code that calls run().

22.3. Duck Typing 202

CHAPTER

TWENTYTHREE

MODULES AND NAMESPACES

An abstract data type (ADT) defines an abstraction for a single type. Some abstractions, however, consist of not just
a single type, but a collection of interdependent types, variables, and other entities. Such a collection of items is a
module, and the modularization of a system is a means of making its maintenance more manageable.

Many languages provide mechanisms for organizing items into modules. In some languages, the mechanism is closely
tied to that used for separate compilation, such that each module is compiled independently and later linked together
with other modules. In other languages, the mechanisms for modules and separate compilation are independent.

23.1 Translation Units

A translation unit or compilation unit is the unit of compilation in languages that support separate compilation. Often, it
consists of a single source file. In languages such as C and C++ that enable other files to be included with a preprocessor
directive, a translation unit consists of a source file and all the files that it recursively includes.

In order to support separate compilation, a translation unit need only know basic information about entities in other
translation units. For example, in C++, only declarations of external entities that are used need be known3. For a
variable, a declaration provides the name and type, and for functions, the name, return type, and parameter type. For
classes, in order to be able to access members, the class declaration with its member declarations needs to be available,
though actual definitions of member functions do not. Normally, this is accomplished by writing declarations in a header
file and then including the header file in any translation unit that needs access to those declarations. The definitions of
variables, functions, and member functions are written in a separate source file, which will usually be compiled as its
own translation unit.

As an example, the following may be placed in the header file Triangle.hpp to provide the declarations for a
Triangle ADT:

class Triangle {
double a, b, c;

public:
Triangle();
Triangle(double, double, double);
double area() const;
double perimeter() const;
void scale(double s);

};

Then the definitions would be placed in a Triangle.cpp file:
3 Templates are an exception, since their definitions need to be instantiated upon use. Thus, the compiler must have the definitions available for

templates.

203

Programming Language Principles and Paradigms, Release 0.4

#include "Triangle.hpp"

Triangle::Triangle()
: Triangle(1, 1, 1) { }

Triangle::Triangle(double a_in, double b_in, double c_in)
: a(a_in), b(b_in), c(c_in) { }

double Triangle::area() const {
return a * b * c;

}

double Triangle::perimeter() const {
return a + b + c;

}

void Triangle::scale(double s) {
a *= s;
b *= s;
c *= s;

}

The #include directive pulls the code from Triangle.hpp into Triangle.cpp, making the Triangle declarations
available to the latter.

In other languages, including Java and C#, there is no notion of a separate header file, and all declarations must also be
definitions. Instead, the compiler automatically extracts the declaration information from a source file when needed by
other translation units.

23.2 Modules, Packages, and Namespaces

Languages also specify units of organization for names in a program. This allows the same name to be used in different
units without resulting in a conflict. In many cases, the unit of organization is at the granularity of a source file, while
in other languages, an organizational unit can span multiple source files.

In Python, the first unit of organization is a source file, which is called a module in Python terminology. A module is
associated with a scope in which the names defined in the module reside. In order to use names from another module,
the external module, or names from within it, must be explicitly imported into the current scope. The import statement
does so, and it can be located at any scope. Consider the following example:

from math import sqrt

def quadratic_formula(a, b, c):
disc = sqrt(b * b - 4 * a * c)
return (-b + disc) / (2 * a), (-b - disc) / (2 * a)

def main():
import sys
if len(sys.argv) < 4:

print('Usage: {0} a b c'.format(sys.argv[0]))
else:

print(quadratic_formula(int(sys.argv[1]),
(continues on next page)

23.2. Modules, Packages, and Namespaces 204

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

int(sys.argv[2]),
int(sys.argv[3])))

if __name__ == '__main__':
main()

In the code above, the import statement in the first line directly imports the sqrt name from the math module into the
scope of the current module. It does not, however, import the math name itself. In the first line of main(), the name
of the sys module is imported into the local scope of main(). The standard dot syntax can be used to refer to a name
nested inside of sys.

Python also allows a second level of organization in the form of a package, which is a collection of modules. For
example, if the code above were in a module named quadratic, we might want to organize it with other mathematical
formulas in a package named formulas. Defining a file __init__.py within a directory enables the modules in that
directory to constitute a package, with the directory name as the name of the package. Packages can then further have
subpackages in the form of subdirectories with their own __init__.py files.

The following is an example of how a sound module can be organized in Python:

sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

Java follows a similar organizational scheme as Python. The first unit of organization is a class, since all code in Java
must be contained within a class. Multiple classes may be contained within the same translation unit, but a translation
unit does not constitute a scope on its own. (If a class is to be used outside a translation unit, however, it should be
located in its own file in order to make it possible for the compiler to find its source when it is used.) A source file may
include a package directive in order to place its code within the context of the specified package:

package formulas

public class Quadratic {
...

}

23.2. Modules, Packages, and Namespaces 205

https://docs.python.org/3/tutorial/modules.html

Programming Language Principles and Paradigms, Release 0.4

Packages can be nested, as in Python.

Also like Python, Java has import statements in order to import names into the local scope. Unlike Python, however,
an unimported name can be used by giving it full qualification, including the sequence of packages that it is a part of:

java.util.Vector vec = new java.util.Vector();

Import statements in Java must appear at the top of a file, after any package declaration but before any class definition.
A single member can be imported from a package, or all of the package’s contents can be imported:

import java.util.Vector; // import just one member
import java.util.*; // import all members

Java also allows static methods and constants to be imported from a class with the static import statement:

import static java.lang.System.out;

public class Foo {
public static void main(String[] args) {
out.println("Hello world!");

}
}

C++ has the concept of namespaces rather than modules or packages. A namespace defines a scope in which names
reside, and an entity can be defined within a namespace as follows:

namespace foo {

struct A {
};

int x;
}

namespace foo {

struct B : A {
};

}

As demonstrated above, multiple entities can be defined within a single namespace block, and multiple namespace
blocks can define entities for the same namespace. Namespaces can also be nested.

In order to access a namespace member from an external context, the scope-resolution operator is required:

foo::A *a = new foo::A;

C++ allows individual names to be imported from a namespace into the current scope with a using declaration:

using foo::A;

Alternatively, all of the names declared within a namespace may be imported as follows:

using namespace foo;

23.2. Modules, Packages, and Namespaces 206

Programming Language Principles and Paradigms, Release 0.4

This latter form should be used with caution, as it significantly increases the likelihood of inadvertent name clashes.

An entity defined outside of a namespace is actually within the global namespace, and it can be referred to with the
scope-resolution operator by including nothing on the left-hand side:

int bar();

void baz() {
std::cout << ::bar() << std::endl;

}

Java similarly places code that is lacking a package specifier into the anonymous package.

C# combines the concept of Python’s modules, which it calls assemblies, with namespaces as in C++.

23.3 Linkage

C does not have namespaces, so it uses an alternate mechanism to avoid name conflicts between translation units. (C++
also includes this, since it is mostly backwards compatible with C.) A programmer can specify a linkage for a function
or variable, which determines whether or not the item is visible outside of the translation unit. The keyword static,
when used on a function or variable at global scope, specifies that the given item has internal linkage, meaning that
it is not available outside of the translation unit. This is crucial when the same name may be defined within different
translation units, as it avoids a conflict at the link stage. In particular, global variables and functions that are not just
declared but also defined in a header file should almost always be given internal linkage, since a header file is likely to
be included from multiple translation units.

A global function or non-const variable has external linkage if it is missing the static specifier. This means that the
name will be accessible from other translation units. A variable or function with external linkage must have exactly
one definition between the translation units in a program. Otherwise, a conflict arises between the multiple definitions,
and a linker error will result. For a function, the distinction between a simple declaration and a definition is clear, since
the latter provides a function body. For a variable, however, a declaration is generally also a definition, since a missing
initializer implies default initialization. The programmer must explicitly state that a declaration of a global variable is
not a definition using the extern specifier:

extern int count; // just a declaration
int count; // also a definition

A const global variable has internal linkage by default, and the extern keyword must be present to give it external
linkage instead. An initialization can be provided, making a declaration of such a variable also a definition:

extern const int SIZE; // just a declaration
extern const int SIZE = 10; // also a definition

23.4 Information Hiding

Many languages provide a mechanism for information hiding at the granularity of modules or packages. In Java, for
example, a class that is declared without the public keyword is only available to other classes within the same package.
In C and C++, the standard method of information hiding is to avoid declaring internal entities in a header file, but to
declare them within a .c or .cpp file, and in the case of variables and functions, declare them with internal linkage.

As mentioned above, in order to use the members of a class in C++, the class definition itself must be available in
the current translation unit. However, access to internal members of a class can be restricted using the private or
protected specifiers.

23.3. Linkage 207

Programming Language Principles and Paradigms, Release 0.4

C, on the other hand, does not provide a means of declaring struct members private. However, there is a common pattern
of preventing direct access to struct members by providing only the declaration of a struct, without its definition, in the
header file. As an example, the following defines the interface for a stack ADT:

typedef struct list *stack;
stack stack_make();
void stack_push(stack s, int i);
int stack_top(stack s);
void stack_pop(stack s);
void stack_free(stack s);

Here, no definition of the list struct is provided, making it an opaque type. This prevents another translation unit from
creating a list object, since it can’t event tell what the size of the object will be, or accessing its members directly.
We can then write the definitions for the stack ADT in its own .c file:

typedef struct node {
int datum;
struct node *next;

} node;

struct list {
node *first;

};

stack stack_make() {
stack s = (stack) malloc(sizeof(struct list));
s->first = NULL;
return s;

}

void stack_push(stack s, int i) {
node *new_node = (node *) malloc(sizeof(node));
new_node->datum = i;
new_node->next = s->first;
s->first = new_node;

}

...

Another .c file can then make use of the stack, without being able to directly access internal details, as follows:

#include "stack.h"

int main(int argc, char **argv) {
stack s = stack_make();
stack_push(s, 3);
stack_push(s, 4);
printf("%d\n", stack_top(s));
stack_pop(s);
printf("%d\n", stack_top(s));
stack_free(s);

}

23.4. Information Hiding 208

Programming Language Principles and Paradigms, Release 0.4

23.5 Initialization

In a program with code organized among different modules or translation units, an important consideration is when the
code that initializes a module is executed. Interdependencies between modules can lead to bugs due to the semantics
of initialization, and there are cases where the only solution is to reorganize the structure of a program.

In Python, the code in a module is executed when it is first imported. Once a module has been imported, any sub-
sequent imports of the module will not cause its code to be re-executed. However, it is possible to construct circular
dependencies between modules that result in errors or unexpected behavior. Consider the following, located in module
foo:

import bar

def func1():
return bar.func3()

def func2():
return 2

print(func1())

Assume that the following is located in module bar:

import foo

def func3():
return foo.func2()

If we then run module foo from the command line, the import statement will cause the code in bar to be executed.
The code in bar has as its first statement an import of foo. This is the first import of foo from bar, so the code for
foo will execute. It starts with import bar; however, this is now the second import of bar into foo, so it will not
have any effect. Then when func1() is called, the definition for func3() in bar has not yet been executed, so we will
get an error:

Traceback (most recent call last):
File "foo.py", line 1, in <module>
import bar

File "bar.py", line 1, in <module>
import foo

File "foo.py", line 9, in <module>
print(func1())

File "foo.py", line 4, in func1
return bar.func3()

AttributeError: module 'bar' has no attribute 'func3'

One way to fix this is to delay the import of foo into bar until func3() is called:

def func3():
import foo
return foo.func2()

However, this still causes the code in foo to execute twice:

23.5. Initialization 209

Programming Language Principles and Paradigms, Release 0.4

$ python3 foo.py
2
2

A better solution is to move func2() from foo into its own module, and then to import that module from both foo
and bar.

In Java, the static initialization of a class occurs when it is first used, which includes creating an instance of the class
or accessing a static member. Thus, the order of initialization depends on the dynamic execution of a program, and a
programmer generally should not rely on a specific order of initialization between different classes.

In C++, initialization follows a multi-step process. First is what C++ calls static initialization, which initializes compile-
time constants to their respective values and other variables with static storage duration to zero. Then is dynamic
initialization, which runs the specified initialization for static-duration variables. In general, variables are initialized in
program order within a translation unit, with some exceptions. However, the order of initialization between translation
units is unspecified, and in fact may be delayed until the first time a translation unit is used. The end result is that a
programmer should avoid any assumption that any other translation unit has been initialized when writing initialization
code for a given translation unit.

23.5. Initialization 210

Part V

Declarative Programming

211

Programming Language Principles and Paradigms, Release 0.4

Most of the languages we’ve considered so far in this text have followed the imperative programming model, where a
computation is decomposed into individual statements that modify the state of the program. These languages have also
been procedural, grouping statements into subroutines that are then called explicitly.

We have also seen the functional programming model, which decomposes a computation into functions that are closely
related to those in mathematics. In such a model, programming is done with expressions that avoid side effects. We
have also considered specific languages that provide a mix of the functional and imperative paradigms.

Functional programs are declarative, since they declare a relationship between the inputs and outputs of a function. We
turn our attention to other models that are declarative, including those that express computation using logical relations,
constraints, and dependencies.

212

CHAPTER

TWENTYFOUR

LOGIC PROGRAMMING

Whereas functional programming is based on the theoretical foundations of 𝜆-calculus, logic programming is based
on the foundation of formal logic. More specifically, it is based on first-order predicate calculus, which expresses
quantified statements such as:

∀𝑋. ∃𝑌. 𝑃 (𝑋) ∨ ¬𝑄(𝑌).

This states that for every value X, over some implicit universe of values, there is some value Y such that either P(X) is
true or Q(Y) is false or both. This specific statement can also be written in the form of an implication:

∀𝑋. ∃𝑌. 𝑄(𝑌) =⇒ 𝑃 (𝑋).

The implication 𝑎 =⇒ 𝑏 is equivalent to ¬𝑎 ∨ 𝑏.

In most logic languages, a program is specified in terms of axioms that are assumed to be true, and a programmer
specifies a goal that the system should attempt to prove from the set of axioms. An axiom is usually written in the form
of a Horn clause, which has the following structure:

H :- B1, B2, ..., BN

The :- symbol specifies a reverse implication, and the comma is used for conjunction. The equivalent form in predicate
calculus is:

(𝐵1 ∧ 𝐵2 ∧ . . . ∧ 𝐵𝑁) =⇒ 𝐻

In the Horn clause above, H is the head of the clause, while B1, B2, ..., BN is the body. In natural language, the
Horn clause is stating that if B1 is true, and B2 is true, . . . , and BN is true, then it must be that H is also true. (Quantifiers
are implicit in a Horn clause, though we will not discuss the details here.)

The individual elements of a Horn clause, such as H or B2 above, are called terms. A term may be a variable, an atom
in the form of a symbol, or a compound term, such as a predicate applied to some arguments which are themselves
terms.

A set of Horn clauses establishes relations among data, which we can then use to query whether a relation holds or
what pieces of data satisfy a particular relation.

As a concrete example, consider the following clauses that represent familial relationships:

parent(P, C) :- mother(P, C). % rule 1
parent(P, C) :- father(P, C). % rule 2
sibling(A, B) :- parent(P, A), parent(P, B). % rule 3

Here, we have stated three rules. The first establishes that if P is the mother of C, then P is also a parent of C. The
second states that if P is the father of C, then P is also a parent of C. The last rule states that if P is a parent of A, and P
is also a parent of B, then A and B are siblings.

213

Programming Language Principles and Paradigms, Release 0.4

We can state some specific relationships as facts, which are Horn clauses without a body and thus are unconditionally
true:

mother(molly, bill). % fact 1
mother(molly, charlie). % fact 2

We can give the logic interpreter a query of the form sibling(bill, S). The interpreter will then attempt to solve
this query using a process known as resolution, which applies rules to existing information. Part of this process is
unification, which connects terms that match. One possible resolution sequence for the query above is:

sibling(bill, S)
-> parent(P, bill), parent(P, S) (rule 3)
-> mother(P, bill), parent(P, S) (rule 1)
-> mother(molly, bill), parent(molly, S) (fact 1)
-> mother(molly, bill), mother(molly, S) (rule 1)
-> mother(molly, bill), mother(molly, charlie) (fact 2)

The end result in this sequence would be that S = charlie.

In the process above, the third step unifies the term mother(P, bill) with mother(molly, bill), which in turn
unifies P with molly. This unification is reflected in all occurrences of P, resulting in the second term becoming
parent(molly, S). Unification is a generalized form of variable binding, except that full terms can be unified with
each other rather than just binding variables to values.

In our formulation of familial relationships, however, there is nothing preventing the resolution engine from applying
mother(molly, bill) in resolving mother(molly, S), so another perfectly valid solution is that S = bill. We
will see later how to fix this specific problem in Prolog.

24.1 Prolog

Before we proceed further in our exploration of logic programming, let us introduce a concrete programming language
to work with. Among logic languages, Prolog is by far the most popular, and many implementations are available.
For the purposes of this text, we will use a specific interpreter called SWI-Prolog, of which there is also a web-based
version.

The syntax we used above is actually that of Prolog. A Prolog program consists of a set of Horn clauses that are assumed
to be true. A clause is composed of a head term and zero or more body terms, and a term may be atomic, compound,
or a variable. An atomic term may be an atom, which is either a Scheme-like symbol or a quoted string. The following
are all atoms:

hello =< + 'logic programming'

If an atom starts with a letter, then that letter must be lowercase. Thus, hEllo is an atom, but Hello is not. Numbers,
which can be integer or floating-point, are also atomic terms.

Variables are identifiers that begin with a capital letter. Thus, Hello is a variable, as are A and X.

Compound terms consist of a functor, which is itself an atom, followed by a list of one or more argument terms. The
following are compound terms:

pair(1, 2) wizard(harry) writeln(hello(world))

A compound term is interpreted as a predicate, meaning that it has a truth value, when it occurs as the head term or
one of the body terms of a clause, as well as when it is the goal query. Otherwise, it is generally interpreted as data, as
in hello(world) in writeln(hello(world)).

24.1. Prolog 214

http://www.swi-prolog.org
http://swish.swi-prolog.org/
http://swish.swi-prolog.org/

Programming Language Principles and Paradigms, Release 0.4

While the syntax of a compound term resembles that of a function call in many imperative or functional languages,
Prolog does not have functions, so a compound term is never interpreted as such.

A Horn clause with no body is a fact, since it is always true. Thus, the following are facts:

mother(molly, bill).
mother(molly, charlie).

Notice the period that signifies the end of a clause.

A Horn clause with a body is called a rule, and it consists of a head term, the reverse implication symbol (:-), and one
or more body terms, separated by commas. The comma signifies conjunction so that the head is true when all the body
terms are true. The following are rules:

parent(P, C) :- mother(P, C).
sibling(A, B) :- parent(P, A), parent(P, B).

The first rule states that if mother(P, C) is true, then parent(P, C) is also true. The second rule states that if both
parent(P, A) and parent(P, B) are true, then sibling(A, B) is true.

A program is composed of a set of facts and rules. Once these have been established, we can query the Prolog interpreter
with a a goal predicate. The interpreter will attempt to establish that the goal is true, and if it contains variables,
instantiate them with terms that result in the satisfaction of the goal. If the query succeeds, the interpreter reports
success, along with the terms that the variables unified with in order to establish the result. If more than one solution
may exist, we can ask for the next one using a semicolon in most interpreters. If we ask for a solution and no more
exist, the interpreter reports failure.

As an example, consider the query sibling(bill, S). Loading a file containing the two facts and rules above will
result in the interactive prompt ?- (For now, we have elided the parent rule that depended on father, since we haven’t
established any father facts and our Prolog interpreter will report an error as a result.):

?- sibling(bill, S).
S = bill ;
S = charlie.

At the prompt, we’ve entered the query followed by a period to signify the end of the query. The interpreter reports
S = bill as the first result, and we have the option of entering a semicolon to search for another or a period to end
the query. We enter a semicolon, and the interpreter finds and reports S = charlie, as well as a period to indicate its
certainty that no more solutions exist.

The actual order in which Prolog searches for a result is deterministic, as we will see shortly. Thus, the query will
always find S = bill as its first result and S = charlie as its second.

24.1.1 Lists

Compound terms, which can relate multiple individual terms, allow us to represent data structures. For example, we
can use the compound term pair(First, Second) to represent a pair composed of First and Second. The term
will not appear on its own as a head or body term, so it will be treated as data. We can then define relations for lists as
follows:

cons(First, Second, pair(First, Second)).
car(pair(First, _), First).
cdr(pair(_, Second), Second).
is_null(nil).

24.1. Prolog 215

Programming Language Principles and Paradigms, Release 0.4

In the clauses above, an underscore represents an anonymous variable. Many Prolog implementations will raise a
warning if a variable is used only once in a clause – such a variable is called a singleton, and it can be introduced
inadvertently due to a typo, as in the following:

cons(First, Second, pair(Frist, Second)).

Here, we misspelled First as Frist, so that both are singleton variables. The warning from the Prolog interpreter
directs our attention to this, so that we can fix it. If, on the other hand, we do intend a variable to be used only once,
we can start it with an underscore to inform the implementation of that intent. We can also use a lone underscore, and
each occurrence of a solitary underscore is considered a separate, anonymous variable.

We’ve set nil as our representation for an empty list. We can then make queries on lists as follows:

?- cons(1, nil, X).
X = pair(1, nil).

?- car(pair(1, pair(2, nil)), X).
X = 1.

?- cdr(pair(1, pair(2, nil)), X).
X = pair(2, nil).

?- cdr(pair(1, pair(2, nil)), X), car(X, Y), cdr(X, Z).
X = pair(2, nil),
Y = 2,
Z = nil.

?- is_null(nil).
true.

?- is_null(pair(1, pair(2, nil))).
false.

In the fourth example, we’ve used conjunction to obtain the cdr of the original list, as well as the car and the cdr of the
result.

As in Scheme, lists are a fundamental data structure in Prolog, so Prolog provides its own syntax for lists. A list can
be specified by placing elements in square brackets, separated by commas:

[]
[1, a]
[b, 3, foo(bar)]

A list can be decomposed into a number of items followed by a rest, much like the period in Scheme, using a pipe:

?- writeln([1, 2 | [3, 4]]). % similar to (1 2 . (3 4)) in Scheme
[1,2,3,4]
true.

We can use this syntax to write rules on lists. For example, a contains predicate is as follows:

contains([Item|_Rest], Item).
contains([_First|Rest], Item) :-

contains(Rest, Item).

24.1. Prolog 216

Programming Language Principles and Paradigms, Release 0.4

The first clause asserts that a list whose first element is Item contains Item. The second clause states that a list contains
Item if the remaining list, excluding the first item, contains Item. Thus:

?- contains([], a).
false.

?- contains([a], a).
true .

?- contains([b, c, a, d], a).
true .

The built-in member predicate works similarly to our definition of contains, except that it takes the arguments in
reverse order:

?- member(a, []).
false.

?- member(a, [a]).
true.

24.1.2 Arithmetic

Prolog provides numbers, as well as comparison predicates on numbers. For convenience, these predicates may be
written in infix order:

?- 3 =< 4. % less than or equal
true.

?- 4 =< 3.
false.

?- 3 =:= 3. % equal (for arithmetic)
true.

?- 3 =\= 3. % not equal (for arithmetic)
false.

Prolog also provides arithmetic operators, but they merely represent compound terms. Thus, 3 + 4 is another means
of writing the compound term +(3, 4). If we attempt to unify this with 7 using the explicit unification operator =, it
will fail:

?- 7 = 3 + 4.
false.

Similarly, if we attempt to unify a variable with an arithmetic expression, it will be unified with the compound term
itself:

?- X = 3 + 4.
X = 3+4.

Comparison operators, however, do evaluate the arithmetic expressions in their operands::

24.1. Prolog 217

Programming Language Principles and Paradigms, Release 0.4

?- 7 =:= 3 + 4.
true.

?- 2 + 5 =:= 3 + 4.
true.

?- 4 < 3 + 2.
true.

In order for the operands to be evaluated, variables in the operands must be instantiated with numeric values. A
comparison cannot be applied to an uninstantiated variable:

?- X =:= 3 + 4.
ERROR: Arguments are not sufficiently instantiated

Instead, the is operator is defined to unify its first argument with the arithmetic result of its second argument, allowing
the first argument to be an uninstantiated variable:

?- 7 is 3 + 4.
true.

?- X is 3 + 4.
X = 7.

?- X is 3 + 4, X =:= 7.
X = 7.

?- X is 3 + 4, X = 7.
X = 7.

In the third example, X is unified with 7, the result of adding 3 and 4. Since X is now instantiated with 7, it can be
compared to 7. In the fourth example, X is 7 so it unifies with the number 7.

We can use this to define a length predicate on our list representation above:

len(nil, 0).
len(pair(_First, Second), Length) :-

len(Second, SecondLength), Length is SecondLength + 1.

Here, Length is unified with the arithmetic result of adding 1 to SecondLength. This must occur after the recursive
application of len, so that SecondLength is sufficiently instantiated to be able to perform arithmetic on it. Then:

?- len(nil, X).
X = 0.

?- len(pair(1, pair(b, nil)), X).
X = 2.

24.1. Prolog 218

Programming Language Principles and Paradigms, Release 0.4

24.1.3 Side Effects

Prolog provides several predicates that perform input and output. We’ve already used the writeln predicate, which
writes a term to standard out and then writes a newline. The write predicate also writes a term to standard out, but
without a trailing newline:

?- X = 3, write('The value of X is: '), writeln(X).
The value of X is: 3
X = 3.

We will not discuss the remaining I/O routines here.

24.2 Unification and Search

The core computational engine in Prolog revolves around unification and search. The search procedure takes a set of
goal terms and looks for a clause that has a head that can unify with one of the terms. The unification process can
recursively unify subterms, which may instantiate or unify variables. If the current term unifies with the head of a
clause, then the body terms, with variables suitably instantiated, are added to the set of goal terms. The search process
succeeds when no more goal terms remain.

This process of starting from goal terms and working backwards, replacing heads with bodies, is called backward
chaining. A logic interpreter may use forward chaining instead, which starts from facts and works forward to derive
the goal. However, Prolog is defined to use backward chaining.

The unification rules for two terms in Prolog are as follows:

1. An atomic term only unifies with itself.

2. An uninstantiated variable unifies with any term. If the other term is not a variable, then the variable is instantiated
with the value of the other term. If the other term is another variable, then the two variables are bound together
such that if one of them is later instantiated with a value, then so is the other.

3. A compound term unifies with another compound term that has the same functor and number of arguments, and
only if the arguments of the two compound terms also unify.

As stated by the first rule, the atomic term 1 only unifies with 1, and the term abc only unifies with abc.

The second rule states that a variable X unifies with a non-variable by instantiating it to the given value. This essentially
means that all occurrences of the variable are replaced with the given value. Thus X unifies with 3 by instantiating X
with 3, Y unifies with foo(1, 3) by instantiating it with foo(1, 3), and Z unifies with foo(A, B) by instantiating
it with foo(A, B).

A variable unifies with another variable by binding them together. Thus, if X unifies with Y, and if Y is later instantiated
with 3, then X is also instantiated with 3.

The last rule states that a compound term such as foo(1, X) unifies with foo(Y, 3) by recursively unifying the
arguments, such that Y is instantiated with 1 and X with 3.

Care must be taken in the search process to treat variables that appear in independent contexts as independent, even if
they have the same name. Thus, given the clause:

foo(X, Y) :- bar(Y, X).

and the goal foo(3, X), the variable X should be treated as distinct in the contexts of the goal and the clause. One
way to accomplish this is renaming before applying a rule, analogous to 𝛼-reduction in 𝜆-calculus:

foo(X1, Y1) :- bar(Y1, X1).

24.2. Unification and Search 219

Programming Language Principles and Paradigms, Release 0.4

Thus, unifying the goal foo(3, X) with the head foo(X1, Y1) produces X1 = 3 and Y1 = X, resulting in the sub-
sequent goal bar(X, 3).

24.2.1 Search Order and Backtracking

In pure logic programming, the order in which clauses are applied and body terms are resolved doesn’t matter as long
as the search process terminates. However, since Prolog has side effects and non-pure operations, it specifies a well-
defined order for both. In particular, clauses for a predicate are attempted to be applied in program order, and terms in
a conjunction are resolved from left to right. This provides the programmer with some control over how computation
proceeds, which can be used to improve efficiency as well as sequence side effects.

A search process that goes down one path may end up in a dead end, where no clauses can be applied to a goal term. This
should not immediately result in failure, since changing a previous decision made by the search may lead to a solution.
Thus, the search process performs backtracking on failure, or even on success if a user requests more solutions. This
reverts the search process to the last choice point with remaining options, at which a different choice is made about
which clause to apply.

As an example, consider the following clauses:

sibling(A, B) :- mother(P, A), mother(P, B).

mother(lily, harry).
mother(molly, bill).
mother(molly, charlie).

Suppose the goal is sibling(S, bill). Then the search tree is as in Figure 24.1.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Goals
sibling(S, bill)

Bindings

Figure 24.1: The search tree for the query sibling(S, bill).

The search will first unify sibling(S, bill) with the goal term sibling(A, B), binding S and A together and
instantiating B with bill. We use the notation S = A to denote that S and A are bound together, as in Figure 24.2.

Prolog will then add the body terms to its set of goals, so that mother(P, A) and mother(P, B) need to be satisfied.
It then searches for a solution to mother(P, A), under an environment in which S and A are bound together and B is
instantiated with bill. There are several clauses that can be applied to satisfy mother(P, A), introducing a choice
point. Prolog attempts to apply clauses in program order, so the first choice the search engine will make is to unify
mother(P, A) with mother(lily, harry), as shown in Figure 24.3.

This instantiates A, and therefore S since A and S are bound together, with harry and P with lily. Then only the goal
term mother(P, B) remains, and since multiple clauses can be applied, another choice point is introduced. The first

24.2. Unification and Search 220

Programming Language Principles and Paradigms, Release 0.4

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = A

B = bill

Goals
mother(P, A)
mother(P, B)

Figure 24.2: Unifying sibling(S, bill)with sibling(A, B) binds S and A together and instantiates Bwith bill.
The body terms mother(P, A) and mother(P, B) are added to the goal set.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = harry
B = bill
P = lily

A = harry

Goals
mother(P, B)

Figure 24.3: Unifying mother(P, A)with mother(lily, harry) instantiates Pwith lily and A and Swith harry.
The goal term mother(P, A) is satisfied, so it is removed from the goal set.

24.2. Unification and Search 221

Programming Language Principles and Paradigms, Release 0.4

choice is to unify mother(P, B) with mother(lily, harry), as demonstrated in Figure 24.4.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = harry
B = bill
P = lily

A = harry

Goals
mother(P, B)

Figure 24.4: Unification of mother(P, B) with mother(lily, harry) fails, since B is instantiated with bill,
which does not unify with harry.

This unification fails, since it requires B to be unified with harry. However, B is currently instantiated with the atom
bill, and two atoms only unify if they are the same, so that bill and harry do not unify. The unification failure
causes the search engine to backtrack to the previous choice point, so that it instead attempts to unify mother(P, B)
with mother(molly, bill). Figure 24.5 illustrates this.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = harry
B = bill
P = lily

A = harry

Goals
mother(P, B)

Figure 24.5: Unification of mother(P, B) with mother(molly, bill) fails, since P is instantiated with lily,
which does not unify with molly.

This unification also fails, since it requires P, currently instantiated with lily, to be unified with molly. The search
backtracks once again, trying to unify mother(P, B) with mother(molly, charlie), as shown in Figure 24.6.

Again, the unification fails, so the search backtracks. At this point, it has exhausted all the choices for mother(P,
B), so it backtracks further to the preceding choice point. Now, it makes the choice of unifying mother(P, A) with
mother(molly, bill), as illustrated in Figure 24.7.

This instantiates P with molly and A and S with bill. Then, as shown in Figure 24.8, the search attempts to find a
solution for mother(P, B), first attempting to unify it with mother(lily, harry).

This fails, since P = molly cannot unify with lily. Thus, the search backtracks to the previous choice point, attempt-

24.2. Unification and Search 222

Programming Language Principles and Paradigms, Release 0.4

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = harry
B = bill
P = lily

A = harry

Goals
mother(P, B)

Figure 24.6: Unification of mother(P, B)with mother(molly, charlie) fails: P is instantiated with lily, which
does not unify with molly, and B is instantiated with bill, which does not unify with charlie.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = bill
B = bill

P = molly
A = bill

Goals
mother(P, B)

Figure 24.7: The search backtracks and unifies mother(P, A)with mother(molly, bill) instead. This instantiates
P with molly and A and S with bill.

24.2. Unification and Search 223

Programming Language Principles and Paradigms, Release 0.4

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = bill
B = bill

P = molly
A = bill

P = lily,
B = harry

Goals
mother(P, B)

Figure 24.8: Unification of mother(P, B) with mother(lily, harry) fails: P is instantiated with molly, which
does not unify with lily, and B is instantiated with bill, which does not unify with harry.

ing to unify mother(P, B) with mother(molly, bill). Figure 24.9 demonstrates this.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = bill
B = bill

P = molly
A = bill

P = lily,
B = harry

Goals

Figure 24.9: Unification of mother(P, B) with mother(molly, bill) succeeds. No goal terms remain, so the
query is satisfied with S = bill.

This succeeds. No more goal terms remain, so the query succeeds with a solution of S = bill.

We can proceed to ask the interpreter for more solutions, which continues the search at the last choice point. One more
choice remains, to unify mother(P, B) with mother(molly, charlie), as shown in Figure 24.10.

However, this fails, so the search backtracks to the preceding choice point, unifying mother(P, A) with
mother(molly, charlie), as illustrated in Figure 24.11.

Continuing the search with P instantiated with molly and A and S with charlie reaches another choice point for
mother(P, B). As Figure 24.12 demonstrates, the first choice fails.

However, the second choice of unifying mother(P, B) with mother(molly, bill) succeeds, as shown in Figure
24.13.

Thus, we have another solution of S = charlie. We can then ask for another solution, resulting in the search engine
trying the last choice for mother(P, B), as demonstrated in Figure 24.14.

24.2. Unification and Search 224

Programming Language Principles and Paradigms, Release 0.4

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = bill
B = bill

P = molly
A = bill

P = lily,
B = harry

Goals
mother(P, B)

Figure 24.10: Continuing to search for more solutions, unification of mother(P, B)with mother(molly, charlie)
fails, since B is instantiated with bill, which does not unify with charlie.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = lily,
B = harry

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR

Bindings
S = charlie

B = bill
P = molly

A = charlie

Goals
mother(P, B)

Figure 24.11: The search backtracks and unifies mother(P, A) with mother(molly, charlie) instead. This in-
stantiates P with molly and A and S with charlie.

24.2. Unification and Search 225

Programming Language Principles and Paradigms, Release 0.4

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR
P = lily,

B = harry

Bindings
S = charlie

B = bill
P = molly

A = charlie

Goals
mother(P, B)

Figure 24.12: Unification of mother(P, B) with mother(lily, harry) fails: P is instantiated with molly, which
does not unify with lily, and B is instantiated with bill, which does not unify with harry.

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR
P = lily,

B = harry

Bindings
S = charlie

B = bill
P = molly

A = charlie

Goals

Figure 24.13: Unification of mother(P, B) with mother(molly, bill) succeeds. No goal terms remain, so the
query is satisfied with S = charlie.

24.2. Unification and Search 226

Programming Language Principles and Paradigms, Release 0.4

sibling(S, bill)

sibling(A, B)

mother(P, A) mother(P, B)

mother(lily, harry)

S = A, B = bill

P = lily,
A = harry

mother(molly, bill) mother(molly, charlie) mother(lily, harry) mother(molly, bill) mother(molly, charlie)

P = molly,
A = bill

P = molly,
A = charlie

P = molly,
B = bill

P = molly,
B = charlie

AND

OR OR
P = lily,

B = harry

Bindings
S = charlie

B = bill
P = molly

A = charlie

Goals
mother(P, B)

Figure 24.14: Continuing to search for more solutions, unification of mother(P, B)with mother(molly, charlie)
fails, since B is instantiated with bill, which does not unify with charlie. No choice points remain, so the search
terminates.

This choice fails. At this point, all choice points have been exhausted, so the interpreter reports that no more solutions
can be found. The full interpreter interaction is as follows, reflecting the search process above:

?- sibling(S, bill).
S = bill ;
S = charlie ;
false.

24.3 The Cut Operator

By default, Prolog considers each possible alternative in turn when it reaches a choice point. However, Prolog provides
the cut operator, written as !, to eliminate choice points associated with the current predicate. For example, recall the
contains predicate:

contains([Item|_Rest], Item).
contains([_First|Rest], Item) :-

contains(Rest, Item).

A query such as contains([1, 2, 3, 4], 2) introduces a choice point as to which clause to unify with the goal.
The first choice fails, since contains([1, 2, 3, 4], 2) cannot unify with contains([Item|_Rest], Item).
However, the second choice succeeds, so that we have a new goal term of contains([2, 3, 4], 2). Here another
choice point occurs, and the first choice succeeds, with Item instantiated with 2 and _Rest instantiated with [3, 4].
Since no goal terms remain, the query as a whole succeeds. However, the interpreter still has an unexplored choice
available, so it will report that more solutions may exist, requiring us to manually either continue the query with a
semicolon or end it with a dot:

?- contains([1, 2, 3, 4], 2).
true ;
false.

Instead, we can add the cut operator to tell the interpreter to stop searching for alternatives once it has found a solution
for contains([1, 2, 3, 4], 2):

24.3. The Cut Operator 227

Programming Language Principles and Paradigms, Release 0.4

?- contains([1, 2, 3, 4], 2), !.
true.

We can similarly rewrite contains to eliminate choice points upon success:

contains([Item|_Rest], Item) :- !.
contains([_First|Rest], Item) :-

contains(Rest, Item).

Here, as soon as a goal term unifies with contains([Item|_Rest], Item), the choice point of which contains
clause to unify with that goal term is eliminated. Thus, only one solution is found:

?- contains([1, 2, 3, 4], 2).
true.

On the other hand, the fact that the cut operator prevents other choices from being considered can result in queries that
previously succeeded to now fail:

?- contains([1, 2, 3, 4], X), X = 3.
false.

Here, the first goal term succeeds by instantiating Xwith 1, and the cut operator prevents other choices for X from being
considered. Then X, now instantiated as 1, fails to unify with 3 in the second goal term.

Given the potential negative consequences of eliminating choice points, using the cut operator is often considered bad
practice, so that it should be avoided in most cases. In this text, we only use the cut operator as part of a query, not as
part of a rule.

24.4 Negation

The search above for sibling(S, bill) produced the undesirable result S = bill. In order to eliminate results
from consideration, Prolog provides a limited form of negation. For instance, we can rewrite the sibling rule as:

sibling(A, B) :- A \= B, mother(P, A), mother(P, B).

This states that A must not be unifiable with B. Unfortunately, our query will now fail completely:

?- sibling(S, bill).
false.

This is because when the body term A \= B is reached, A is uninstantiated while B is instantiated with bill. The
unification rules above allow an uninstantiated variable to unify with anything: A can unify with B by instantiating A
with bill. Since A is unifiable with B, the goal term A \= B fails.

On the other hand, if we write the rule as follows:

sibling(A, B) :- mother(P, A), mother(P, B), A \= B.

then our query succeeds:

?- sibling(S, bill).
S = charlie .

24.4. Negation 228

Programming Language Principles and Paradigms, Release 0.4

This is because A and B are instantiated as atoms by the time they get to the last term, and we can assert that two atoms
not unify.

Prolog also provides an explicit negation predicate, \+. We can therefore query whether harry and bill are not
siblings:

?- \+(sibling(harry, bill)).
true.

Unfortunately, we cannot obtain a more general result from the search engine, such as asking it to find someone who
is not a sibling of bill:

?- \+(sibling(S, bill)).
false.

This is because negation in Prolog is handled by attempting to prove the term being negated, and only if the proof fails
is the negation true. However, the query sibling(S, bill) does indeed succeed with S = charlie, so negation
results in false.

Thus, while Prolog does provide negation, it is of limited use. This is not a deficiency in Prolog itself, but rather
follows from the limits of the logic-programming paradigm as a whole, which cannot provide the full expressiveness
of first-order predicate calculus.

24.5 Examples

We conclude with some more interesting examples expressed in the logic paradigm.

• Suppose we wish to find a seven digit number such that the first digit is the count of zeroes in the digits of the
number, the second digit is the count of ones, and so on. Using Prolog, we can express this computation as
follows. We will represent our results as a list of digits. First, we define a predicate to count the occurrences of
a particular numerical value in a list:

count(_Item, [], 0).
count(Item, [Item|Rest], Count) :-

count(Item, Rest, RestCount),
Count is RestCount + 1.

count(Item, [Other|Rest], Count) :-
Item =\= Other,
count(Item, Rest, Count).

The first rule states that an arbitrary item occurs zero times in an empty list. The second states that if a value is
the first item in a list, then the number times it occurs in the list is one more than the number of times it appears in
the rest of the list. The last rule states that if a value is not equal to the first item, then its number of occurrences
is that same as the number of times it appears in the rest of the lest.

Next, we define facts to restrict the values of a digit:

is_digit(0).
is_digit(1).
is_digit(2).
is_digit(3).
is_digit(4).
is_digit(5).
is_digit(6).

24.5. Examples 229

Programming Language Principles and Paradigms, Release 0.4

Alternatively, we can define the is_digit predicate using member:

is_digit(Digit) :-
member(Digit, [0, 1, 2, 3, 4, 5, 6]).

Finally, we define a predicate to compute our result:

digits(List) :-
List = [Digit0, Digit1, Digit2, Digit3, Digit4, Digit5, Digit6],
is_digit(Digit0),
is_digit(Digit1),
is_digit(Digit2),
is_digit(Digit3),
is_digit(Digit4),
is_digit(Digit5),
is_digit(Digit6),
count(0, List, Digit0),
count(1, List, Digit1),
count(2, List, Digit2),
count(3, List, Digit3),
count(4, List, Digit4),
count(5, List, Digit5),
count(6, List, Digit6).

We start by unifying the argument List with a list of seven items. We then specify that each item must be a
digit. Finally, we require that the the first item be the count of zeroes in the list, the second the count of ones,
and so on.

Entering our query, we get the sole result:

?- digits(List).
List = [3, 2, 1, 1, 0, 0, 0] ;
false.

We can proceed to write a predicate that relates a list of digits to an actual number:

digits_number([], 0).
digits_number([First|Rest], Number) :-

digits_number(Rest, RestNumber),
length(Rest, RestLength),
Number is First * 10 ^ RestLength + RestNumber.

An empty list is related to zero. Otherwise, we compute the number represented by the list excluding its first
item, as well of the length of that list. Then the number representing the total list is the number of the smaller
list plus the multiple of the power of 10 represented by the first digit. Then:

?- digits(List), digits_number(List, Number), !.
List = [3, 2, 1, 1, 0, 0, 0],
Number = 3211000.

• The Tower of Hanoi is a classic puzzle that consists of three rods and a set of 𝑁 discs of different sizes that slide
onto a rod. The puzzle starts with discs in ascending order from top to bottom on a single rod, and the goal is to
move the entire stack to another rod by moving one disc at a time. It is prohibited to place a larger disc on top of
a smaller one. The solution is to recursively move the 𝑁 − 1 smaller discs to the third rod, move the remaining,
largest disc to the second rod, and then to recursively move the other 𝑁 − 1 discs to the second rod.

24.5. Examples 230

Programming Language Principles and Paradigms, Release 0.4

We can express this computation in Prolog as follows, using the write and writeln predicates to print a move
to standard output:

move(Disc, Source, Target) :-
write('Move disc '), write(Disc), write(' from '),
write(Source), write(' to '), writeln(Target).

hanoi(1, Source, Target, _Temporary) :-
move(1, Source, Target).

hanoi(NumDiscs, Source, Target, Temporary) :-
Previous is NumDiscs - 1,
hanoi(Previous, Source, Temporary, Target),
move(NumDiscs, Source, Target),
hanoi(Previous, Temporary, Target, Source).

The move predicate, given a disc and source and target rods, merely writes out the move to standard output. The
hanoi predicate relates a number of discs and three rods, a source rod, a target rod, and a temporary rod. The
base case is when there is one disc, and that disc can be moved directly from source to target. The second hanoi
rule is the recursive case, which requires is recursively move all but the largest disc to the temporary rod, move
the largest disc to the target rod, and then move the remaining discs from the temporary to the target rod. Since
Prolog solves the body terms in order, the moves will occur in the right order.

The follows is the result of a query with 𝑁 = 4:

?- hanoi(4, a, b, c).
Move disc 1 from a to c
Move disc 2 from a to b
Move disc 1 from c to b
Move disc 3 from a to c
Move disc 1 from b to a
Move disc 2 from b to c
Move disc 1 from a to c
Move disc 4 from a to b
Move disc 1 from c to b
Move disc 2 from c to a
Move disc 1 from b to a
Move disc 3 from c to b
Move disc 1 from a to c
Move disc 2 from a to b
Move disc 1 from c to b
true .

• The quicksort algorithm sorts a list by choosing a pivot, often the first item, partitioning the remaining list into
elements that are less than and greater than or equal to the pivot, recursively sorting the partitions, and then
appending them. The following Prolog code expresses this:

quicksort([], []).
quicksort([Pivot|Rest], Sorted) :-

partition(Pivot, Rest, Smaller, GreaterOrEqual),
quicksort(Smaller, SortedSmaller),
quicksort(GreaterOrEqual, SortedGreaterOrEqual),
append(SortedSmaller, [Pivot|SortedGreaterOrEqual], Sorted).

The first item is chosen as the pivot, and the remaining items are then partitioned into the smaller items and those
that are greater than or equal to the pivot. The two smaller lists are recursively sorted, and then the results are

24.5. Examples 231

Programming Language Principles and Paradigms, Release 0.4

appended, with the pivot placed in front of the items that are greater than or equal to it, to produce the sorted
result.

The partition predicate is as follows:

partition(_Pivot, [], [], []).
partition(Pivot, [Item|Rest], [Item|Smaller], GreaterOrEqual) :-

Item < Pivot,
partition(Pivot, Rest, Smaller, GreaterOrEqual).

partition(Pivot, [Item|Rest], Smaller, [Item|GreaterOrEqual]) :-
Item >= Pivot,
partition(Pivot, Rest, Smaller, GreaterOrEqual).

The first item in the list is either less than the pivot or greater than or equal to it. In the first case, the item should
be the first one in the smaller partition, and the rest of the list is partitioned to produce the rest of the smaller and
greater-than-or-equal partitions. In the second case, the item should be the first one in the greater-than-or-equal
partition, and recursion handles the rest of the list.

Entering a query for a specific list produces:

?- quicksort([4, 8, 5, 3, 1, 2, 6, 9, 7], X).
X = [1, 2, 3, 4, 5, 6, 7, 8, 9] .

• The sieve of Eratosthenes is an algorithm for computing prime numbers up to some limit 𝑁 . We start by con-
structing a list of integers in order from 2 to 𝑁 . Then we repeat the following process, until no numbers remain:

1. The first item in the list is prime.

2. Filter out all multiples of the first item from the remaining list.

3. Go to step 1.

We can write this algorithm in Prolog as follows. First, we construct a list with the integers from 2 to the limit
𝑁 :

numbers(2, [2]).
numbers(Limit, Numbers) :-

LimitMinusOne is Limit - 1,
numbers(LimitMinusOne, NumbersToM),
append(NumbersToM, [Limit], Numbers).

We do so by recursively computing a list of integers from 2 to 𝑁 − 1 and then appending 𝑁 to the result.

We can then use write a predicate to filter out the multiples of a factor from a list:

filter_not_multiple(_Factor, [], []).
filter_not_multiple(Factor, [Number|Rest],

[Number|FilteredRest]) :-
Number mod Factor =\= 0,
filter_not_multiple(Factor, Rest, FilteredRest).

filter_not_multiple(Factor, [Number|Rest], FilteredRest) :-
Number mod Factor =:= 0,
filter_not_multiple(Factor, Rest, FilteredRest).

The filter_not_multiple predicate relates a factor and a list of numbers to a list with the multiples of the
factor filtered out. The second rule retains Number in the resulting list if it is not a multiple of Factor. The third
rule discards Number from the filtered list if it is a multiple of Factor.

24.5. Examples 232

Programming Language Principles and Paradigms, Release 0.4

We can proceed to define a sieve predicate that relates a list of numbers to the result of applying the prime-sieve
algorithm to the list:

sieve([], []).
sieve([Number|Rest], [Number|SievedRest]) :-

filter_not_multiple(Number, Rest, FilteredRest),
sieve(FilteredRest, SievedRest).

The first number is retained in the result. All multiples of the first number are filtered out of the rest of the list.
The sieve algorithm is then recursively applied to the filtered list to obtain the rest of the result list.

Finally, we write a primes predicate that relates an integer limit to a list of primes up to and including that limit:

primes(Limit, Primes) :-
numbers(Limit, Numbers),
sieve(Numbers, Primes).

This rule constructs a list of numbers from 2 up to the limit and then applies the sieve algorithm to the list. We
can then use the sieve to compute prime numbers up to 100:

?- primes(100, P).
P = [2, 3, 5, 7, 11, 13, 17, 19, 23|...] [write]
P = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97] .

Pressing the w key when the solution is displayed in truncated form causes the interpreter to print out the non-
truncated form in the second line above.

We can also use the built-in numlist predicate rather than the numbers predicate we wrote:

primes(Limit, Primes) :-
numlist(2, Limit, Numbers),
sieve(Numbers, Primes).

24.5. Examples 233

CHAPTER

TWENTYFIVE

CONSTRAINTS AND DEPENDENCIES

In addition to functional and logic programming, the declarative paradigm includes programs that express constraints
among variables and constants as well those that describe dependency graphs. We will look at the former in constraint
logic programming and an instance of the latter in the make build automation tool.

25.1 Constraint Logic Programming

Constraint logic programming is an extension of logic programming to include constraints on variables. While logic
programming allows a limited form of constraints, languages such as Prolog only allow arithmetic constraints to be
applied to variables that have been instantiated. For example, suppose we wanted to find a number less than 1000 that
is both a square and the sum of two squares. The following is an attempt to specify this in Prolog:

square_sum([N, X, Y, Z]) :-
N =:= Z * Z, N =:= X * X + Y * Y,
X > 0, Y > 0, Z > 0, X < Y, N < 1000.

We can attempt a query:

?- square_sum(S).
ERROR: =:=/2: Arguments are not sufficiently instantiated

Unfortunately, since N and Z are not instantiated in the comparison N =:= Z, we get an error.

On the other hand, using the CLP(FD) library for Prolog, which allows constraint logic programming over finite do-
mains, we can specify the solution as follows:

:- use_module(library(clpfd)). % load the clpfd library

square_sum_c([N, X, Y, Z]) :-
N #= Z * Z, N #= X * X + Y * Y,
X #> 0, Y #> 0, Z #> 0, X #< Y, N #< 1000,
label([N, X, Y, Z]).

The first clause loads the library for use. We can then specify arithmetic constraints using operators that begin with a
pound symbol. For instance, the #= operator constrains the two arguments to be equal, while the #< operator constraints
the first argument to be smaller than the second. Finally, the label predicate forces the solver to ground the given
variables, computing actual values for them rather than specifying their results as constraints. Entering a query, we can
now obtain all solutions:

?- square_sum_c(S).
S = [25, 3, 4, 5] ;

(continues on next page)

234

http://www.swi-prolog.org/man/clpfd.html

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

S = [100, 6, 8, 10] ;
S = [169, 5, 12, 13] ;
S = [225, 9, 12, 15] ;
S = [289, 8, 15, 17] ;
S = [400, 12, 16, 20] ;
S = [625, 7, 24, 25] ;
S = [625, 15, 20, 25] ;
S = [676, 10, 24, 26] ;
S = [841, 20, 21, 29] ;
S = [900, 18, 24, 30] ;
false.

25.1.1 Search

In constraint logic programming, resolution follows the same basic process as in plain logic programming. For a solver
that uses backward chaining, a set of goal terms is maintained, and the solver searches for a clause whose head can be
unified with the first goal term. If unification succeeds, then the body terms that are not constraints are added to the
set of goals. Terms that are constraints are added to a separate set called the constraint store. When a new constraint
is added to the store, in principle, the store is checked to make sure that the constraints are satisfiable, and if not,
backtracking is done as in standard search. In practice, however, more limited checking is performed in order to obtain
better efficiency from the solver. A solution is obtained when no more goal terms remain, and the set of constraints in
the store is satisfiable.

25.1.2 Examples

As another example of using constraints, consider the canonical verbal arithmetic puzzle of finding a solution to the
following equation:

S E N D
+ M O R E

= M O N E Y

Requirements are that each letter be a distinct digit, and that the leading digit of a number not be zero. We can express
this problem in plain Prolog as the following:

is_digit(Digit) :-
numlist(0, 9, AllDigits),
member(Digit, AllDigits).

money([S, E, N, D, M, O, R, Y]) :-
is_digit(S), is_digit(E), is_digit(N), is_digit(D),
is_digit(M), is_digit(O), is_digit(R), is_digit(Y),
S \= 0, M \= 0,
S \= E, S \= N, S \= D, S \= M, S \= O, S \= R, S \= Y,
E \= N, E \= D, E \= M, E \= O, E \= R, E \= Y,
N \= D, N \= M, N \= O, N \= R, N \= Y,
D \= M, D \= O, D \= R, D \= Y,
M \= O, M \= R, M \= Y,
O \= R, O \= Y,

(continues on next page)

25.1. Constraint Logic Programming 235

https://en.wikipedia.org/wiki/Verbal_arithmetic

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

R \= Y,
1000 * S + 100 * E + 10 * N + D

+ 1000 * M + 100 * O + 10 * R + E
=:= 10000 * M + 1000 * O + 100 * N + 10 * E + Y.

First, we require that each variable be a digit in the range [0, 9], and we further require that S and M not be zero. We then
specify the pairwise uniqueness requirements. Finally, we specify that the variables must satisfy the target equation.

We can enter a query as follows:

?- money(S), !.
S = [9, 5, 6, 7, 1, 0, 8, 2].

Computing this solution takes close to a minute on the author’s iMac computer, since the solver has to search a large
portion of the solution space, with much backtracking.

We can simplify the implementation of money by using the higher-order maplist predicate, as well as the built-in
is_set:

money(List) :-
List = [S, E, N, D, M, O, R, Y],
maplist(is_digit, List), S \= 0, M \= 0, is_set(List),

1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * R + E

=:= 10000 * M + 1000 * O + 100 * N + 10 * E + Y.

The term maplist(is_digit, List) applies the higher-order maplist predicate to map the is_digit predicate
across the elements of List, and is_set(List) ensures that List has no duplicates. While this solution is shorter,
it runs even slower than our original solution, taking about a minute and half on the same machine.

On the other hand, we can use CLP(FD) to specify the problem as follows:

:- use_module(library(clpfd)).

money_c([S, E, N, D, M, O, R, Y]) :-
List = [S, E, N, D, M, O, R, Y],
List ins 0 .. 9, S #\= 0, M #\= 0, all_distinct(List),

1000 * S + 100 * E + 10 * N + D
+ 1000 * M + 100 * O + 10 * R + E

#= 10000 * M + 1000 * O + 100 * N + 10 * E + Y,
label(List).

The ins predicate is defined by CLP(FD) to constrain that the variables in the first argument each be contained in the set
that is the second argument. The .. operator specifies a range, so that 0 .. 9 is the range [0, 9]. The all_distinct
predicate constraints the variables in the argument to take on distinct values. Finally, we use label at the end to ground
the given variables with actual values. We obtain the same result:

?- money_c(S), !.
S = [9, 5, 6, 7, 1, 0, 8, 2].

The solver can use the set of constraints to eliminate most of the search space, and the remaining candidates are checked
when the label predicate is reached. The result is that computing this solution takes about 0.003 seconds on the
author’s iMac, a speedup of about 18000x.

As another example, consider the problem of solving a Sudoku puzzle. The following predicate takes in a nested list
of lists, in row-major order, with some entries provided but others filled with anonymous variables:

25.1. Constraint Logic Programming 236

https://en.wikipedia.org/wiki/Sudoku

Programming Language Principles and Paradigms, Release 0.4

sudoku(Rows) :-
length(Rows, 9), maplist(same_length(Rows), Rows),
append(Rows, Values), Values ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns),
maplist(all_distinct, Columns),
Rows = [Row1, Row2, Row3, Row4, Row5, Row6, Row7, Row8, Row9],
blocks(Row1, Row2, Row3),
blocks(Row4, Row5, Row6),
blocks(Row7, Row8, Row9),
maplist(label, Rows).

The first body term requires that the number of rows be 9. The second uses maplist, which maps a predicate over the
items in a list, as we saw in the previous example. The same_length(Rows) argument is a partially applied predicate
that, when applied to another argument, requires that the two argument lists have the same length. The term as a whole
is checking that each row also has the same length as the number of rows. The append term takes a list of lists and
concatenates them into the single list Values. We then constrain that each variable be in the range [1, 9]. The next
term constrains each row to consist of distinct numbers, and the following two terms constrain each of the columns to
consist of distinct numbers. The next four terms constrain each of the 9x9 squares to be composed of distinct numbers,
with the blocks predicate defined below. Finally, the last term ensures that each variable is grounded to a value.

The blocks predicate is as follows:

blocks([], [], []).
blocks([N1, N2, N3 | RestRow1],

[N4, N5, N6 | RestRow2],
[N7, N8, N9 | RestRow3]) :-

all_distinct([N1, N2, N3, N4, N5, N6, N7, N8, N9]),
blocks(RestRow1, RestRow2, RestRow3).

The predicate takes in three rows, ensures that the set consisting of the first three items from each row contains distinct
values, and then recursively checks this for the remaining items in each row.

We can now provide a query to solve a specific puzzle. The following has been called the “world’s hardest Sudoku”:

?- S = [[8,_,_,_,_,_,_,_,_],
[_,_,3,6,_,_,_,_,_],
[_,7,_,_,9,_,2,_,_],
[_,5,_,_,_,7,_,_,_],
[_,_,_,_,4,5,7,_,_],
[_,_,_,1,_,_,_,3,_],
[_,_,1,_,_,_,_,6,8],
[_,_,8,5,_,_,_,1,_],
[_,9,_,_,_,_,4,_,_]],

sudoku(S).
S = [[8, 1, 2, 7, 5, 3, 6, 4, 9],

[9, 4, 3, 6, 8, 2, 1, 7, 5],
[6, 7, 5, 4, 9, 1, 2, 8, 3],
[1, 5, 4, 2, 3, 7, 8, 9, 6],
[3, 6, 9, 8, 4, 5, 7, 2, 1],
[2, 8, 7, 1, 6, 9, 5, 3, 4],
[5, 2, 1, 9, 7, 4, 3, 6, 8],
[4, 3, 8, 5, 2, 6, 9, 1, 7],
[7, 9, 6, 3, 1, 8, 4, 5, 2]] .

25.1. Constraint Logic Programming 237

http://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html

Programming Language Principles and Paradigms, Release 0.4

Solving this takes less than a tenth of a second on the author’s iMac.

25.2 Make

Make is a family of tools used for automating the building of software packages, as well as tracking dependencies
between the various components of a package. Make operates on programs called makefiles, which contain rules for
how to build individual targets. A target may have dependencies, which are required to be satisfied before the target can
be built, as well as commands that specify how the target should actually be built. Thus, a makefile is a combination of
declarative components relating targets to dependencies and imperative actions specifying the actions required to build
a target.

The structure of a rule in a makefile is as follows:

target: dependencies
commands

Here, dependencies is a list of zero or more targets or files that the given target depends on, and commands is a list
of zero or more actions to be taken, generally each on its own line and indented with a tab character.

As an example, consider the following simple makefile, located by convention in a file named Makefile (note the
capitalization):

hello:
echo "Hello world!"

We can run this from the terminal, if we are in the same directory, as:

$ make hello
echo "Hello world!"
Hello world!

This invokes the hello target, which has no dependencies and as its sole action invokes the shell command to print
Hello world! to the screen. We can leave out the explicit target when invoking make, in which case it will build the
first target in the makefile:

$ make
echo "Hello world!"
Hello world!

The target of a rule is commonly an executable file, and the dependencies are the files needed to build the target. For
example, suppose we have a C++ project with the source files a.cpp, b.cpp, and c.cpp. We can structure our makefile
as follows:

main: a.o b.o c.o
g++ -o main a.o b.o c.o

a.o: a.cpp
g++ --std=c++14 -Wall -Werror -pedantic -c a.cpp

b.o: b.cpp
g++ --std=c++14 -Wall -Werror -pedantic -c b.cpp

c.o: c.cpp
g++ --std=c++14 -Wall -Werror -pedantic -c c.cpp

25.2. Make 238

Programming Language Principles and Paradigms, Release 0.4

Here, our default rule is main, which depends on the targets a.o, b.o, and c.o. In order to build main, those targets
have to be built first, so Make will attempt to build each of those targets using their respective rules. The rule for a.o
depends on the file a.cpp, and if it exists, the command invokes g++ to build the object file a.o. The rules for b.o
and c.o have the same structure. Once those targets have been built, Make can then build main, which links together
the object files into the final main executable. Running make indicates the sequence of operations:

$ make
g++ --std=c++14 -Wall -Werror -pedantic -c a.cpp
g++ --std=c++14 -Wall -Werror -pedantic -c b.cpp
g++ --std=c++14 -Wall -Werror -pedantic -c c.cpp
g++ -o main a.o b.o c.o

Thus, we can specify complex dependency trees with rules in a makefile, and the Make tool will automatically resolve
the dependencies and build the required targets. The relationship between a target and its dependencies is specified
declaratively in a rule.

A key feature of Make is that it only builds a target if it has a dependency, direct or indirect through other rules, that is
newer than the target itself. For instance, if we follow up the preceding build by modifying the timestamp on b.cpp,
we can see that it is newer than the targets b.o and main:

$ touch b.cpp
$ ls -l
-rw-r--r-- 1 kamil staff 229 Nov 17 01:01 Makefile
-rw-r--r-- 1 kamil staff 90 Nov 17 00:57 a.cpp
-rw-r--r-- 1 kamil staff 6624 Nov 17 01:01 a.o
-rw-r--r-- 1 kamil staff 31 Nov 17 01:12 b.cpp
-rw-r--r-- 1 kamil staff 640 Nov 17 01:01 b.o
-rw-r--r-- 1 kamil staff 33 Nov 17 00:58 c.cpp
-rw-r--r-- 1 kamil staff 640 Nov 17 01:01 c.o
-rwxr-xr-x 1 kamil staff 15268 Nov 17 01:01 main

If we then run make, it will only rebuild those targets that depend on b.cpp:

$ make
g++ --std=c++14 -Wall -Werror -pedantic -c b.cpp
g++ -o main a.o b.o c.o

This is a crucial feature for working with large projects, as only the components that depend on a modification are
rebuilt rather than every target in the project.

As a more complex example, consider the following makefile that was used to build a previous version of this text:

all: foundations functional theory data declarative

foundations: foundations.html foundations.tex

functional: functional.html functional.tex

theory: theory.html theory.tex

data: data.html data.tex

declarative: declarative.html declarative.tex

asynchronous: asynchronous.html asynchronous.tex
(continues on next page)

25.2. Make 239

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

metaprogramming: metaprogramming.html metaprogramming.tex

%.html: %.rst
rst2html.py --stylesheet=style/style.css $< > $@

%.tex: %.rst
rst2latex.py --stylesheet=style/style.sty $< > $@
pdflatex $@
pdflatex $@
pdflatex $@

clean:
rm -vf *.html *.tex *.pdf *.aux *.log *.out

The default target is all, which depends on the foundations, functional, theory, data, and declarative targets.
While there are also asynchronous and metaprogramming targets, they were not being built since we had not reached
the corresponding units in the text.

Each of the following standard targets has two dependencies, an .html file and a .tex file. In order to build an .html
file, Make looks for an appropriate target. We have a pattern rule for .html files, which depends on a correspond-
ing .rst file. Thus, in order to build, for example, declarative.html, Make applies the pattern rule and invokes
rst2html.py. The special symbol $< stands for the dependencies, while $@ stands for the target. Thus, the result of
rst2html.py is written to declarative.html, and the build for that target is complete.

We also have a pattern rule for .tex files, which invokes rst2latex.py, followed by several invocations of pdflatex.
The end result is that building declarative.tex ends up creating declarative.pdf as well.

The last rule is to clean up target and temporary files. Thus, we can force the all target to be built from scratch with
make clean all. Without requesting the clean target, only those targets that depend on an .rst file that has been
modified will be rebuilt.

25.2. Make 240

CHAPTER

TWENTYSIX

PATTERN MATCHING

Many languages that are primarily functional or imperative provide a declarative construct that does pattern matching,
specifying separate cases that each define a pattern against which a value can match, and the computation to be done
as a result. These separate cases are analogous to different axioms in Prolog or different pattern rules in Make, and the
matching process is similar to unification in Prolog.

As an example, we take a look at the match statement in Python, which has the following syntax:

match <expression>:
case <pattern>:

<suite>
case <pattern>:

<suite>
...

A controlling expression provides the value to be matched, and one or more case clauses specify a matching pattern
and a suite of statements to be executed upon a match. Only the first clause that matches the value is executed – the
remaining clauses are skipped, even if their patterns also match the value. This is similar to the behavior of a sequence
of if and elif branches, or a sequence of except clauses on a try statement.

There are several kinds of patterns that can be specified, a subset of which are the following:

• A literal pattern specifies a number, string, or boolean literal, or the None literal, and it matches a value that
compares equal to the literal. The following is an example:

def https_error_description(code):
match code:

case 400:
return 'Bad Request'

case 401:
return 'Unauthorized'

case 403:
return 'Forbidden'

case 404:
return 'Not Found'

return f'Unknown code {code}'

This is similar to a switch statement, but the match construct is much more powerful in that it supports other
patterns as well.

• A capture pattern specifies an identifier, and it matches against any value, binding the identifier to that value. In
the example above, we can use such a pattern to incorporate the default result in the match statement:

241

Programming Language Principles and Paradigms, Release 0.4

def https_error_description(code):
match code:

...
case 404:

return 'Not Found'
case unknown:

return f'Unknown code {code}'

Since we don’t actually use the variable introduced in the last case, we can use a lone underscore instead as an
anonymous variable:

def https_error_description(code):
match code:

...
case _:

return f'Unknown code {code}'

A case with a pattern that consists solely of an identifier matches any value, so such a case is only permitted as
the last one in a match statement.

• A class pattern only matches a value that is an instance of the class. The simplest class pattern consists of a type
name followed by empty parentheses:

def https_error_description(code):
match code:

...
case int(): # only matches an int

return f'Unknown code {code}'
case _:

raise ValueError(f'expected an int, got {code}')

A class pattern may also specify attributes that the object must have using syntax similar to keyword arguments:

case Point(x=0, y=0):
...

Alternatively, the class itself may define custom matching using syntax similar to positional arguments. For
instance, several built-in types allow patterns of the form <type>(<subpattern>), which matches against a
value that is an instance of <type> and that also matches <subpattern>. Thus, the pattern int(3)matches an
int whose value is 3, and the pattern int(value) matches any int and binds the name value to that object.

• A sequence pattern consists of a comma-separated list of subpatterns, which can be enclosed by either square
brackets or parentheses1. Such a pattern can match a variety of sequence types (including user-defined ones that
meet a certain set of conditions), though strings are excluded from matching a sequence pattern.

The following is an example of simple sequence patterns:

def is_short(sequence):
match sequence:

case []:
return True

case [_]:
return True

(continues on next page)

1 If there is only one subpattern, then a trailing comma is required if parentheses are used, to distinguish from normal parenthesization. The
parentheses or brackets can be elided for patterns consisting of two or more subpatterns.

242

https://peps.python.org/pep-0634/#sequence-patterns

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

case [_, _]:
return True

case _:
return False

The first case matches an empty sequence, the second a one-element sequence, and the third a two-element
sequence. We use anonymous variables since we are not concerned with the actual element values. Note that the
pattern [_, _] has different behavior than [var, var]. The latter requires both elements to be equal, since the
first occurrence of var binds the variable to a value and the second checks whether the corresponding element
is equal to that value. On the other hand, the anonymous variable _ does not do any binding, so each occurrence
is independent of any others.

A sequence pattern may also contain a variadic subpattern, matching zero or more occurrences. The syntax is
similar to variadic positional arguments:

def is_short(sequence):
match sequence:

case [_, _, *_]:
return False

case _:
return True

Here, the pattern [_, _, *_]matches a sequence with at least two elements – the first occurrence of _matches
the first element, the second occurrence matches second element, and the *_ matches all remaining elements.

The following is an example of recursively computing the length of a sequence using sequence patterns:

def length(sequence):
match sequence:

case []:
return 0

case [_, *rest]:
return 1 + length(rest)

The first case matches an empty sequence, the base case of the computation. The second matches a sequence
with at least one element, and all but the first element match the variadic *rest subpattern. These elements are
encapsulated in a list bound to the rest variable, and we can recurse on this list.

Compare this definition of length with an equivalent predicate in Prolog:

len([], 0).
len([_|Rest], Length) :-
len(Rest, RestLength),
Length is 1 + RestLength.

In both definitions, we specify two separate cases with patterns that are matched against an input list.

There are several other patterns, including mapping patterns, as patterns, value patterns, and “or” patterns, and a case
can include a guard expressed as an if clause to further restrict what the case matches. More details are in the original
specification as well as the tutorial.

We consider one more, complex example that illustrates the declarative nature of pattern matching. Suppose we want
to compute the sum of all the elements in a nested list of numbers. The following expresses this computation in Prolog:

243

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

Programming Language Principles and Paradigms, Release 0.4

% deep_sum(NestedList, Sum).
% True if NestedList is a nested list of numbers, and Sum is the sum
% of all the numbers contained in NestedList.
deep_sum([], 0).
deep_sum([First|Rest], Sum) :-
deep_sum(First, FirstSum),
deep_sum(Rest, RestSum),
Sum is FirstSum + RestSum.

deep_sum(Item, Item). % can restrict this to numbers with :- number(Item).

We have three cases: an empty list whose sum is zero, a non-empty list whose sum is the recursive sum of the first item
(which itself may be a list) plus the recursive sum of the rest of the list, and a non-list item whose sum is itself. We can
express this same computation in Python:

def deep_sum(nested_list):
"""Return the sum of all the numbers in nested_list.

nested_list must be a nested list of numbers.
"""
match nested_list:

case []:
return 0

case [first, *rest]:
return deep_sum(first) + deep_sum(rest)

case item: # can do int(item) | float(item) to restrict to numbers
return item

There is a direct correspondence between the two implementations, reflecting the primarily declarative manner in which
the computation is expressed. The fundamental difference between Prolog and Python here is that Prolog provides
search and backtracking, so that other axioms can be tried if one fails (or more solutions are requested). In Python and
other functional or imperative languages that have pattern matching, a value matches at most one case, and the remaining
cases are never considered. Thus, while pattern matching is declarative, it does not provide the full expressiveness of
logic programming.

244

Part VI

Metaprogramming

245

Programming Language Principles and Paradigms, Release 0.4

Metaprogramming is the technique of writing a computer program that operates on other programs. Systems such as
compilers and program analyzers can be considered metaprograms, since they take other programs as input. The forms
of metaprogramming we will discuss here are specifically concerned with generating code to be included as part of a
program. In a sense, they can be considered rudimentary compilers.

246

CHAPTER

TWENTYSEVEN

MACROS AND CODE GENERATION

A macro is a rule that translates an input sequence into some replacement output sequence. This translation process is
called macro expansion, and some languages provide macros as part of their specification. The macro facility may be
implemented as a preprocessing step, where macro expansion occurs before lexical and syntactic analysis, or it may be
incorporated as part of syntax analysis or a later translation step.

One of the most widely used macro systems is the C preprocessor (CPP), which is included in both C and C++ as the
first step in processing a program. Preprocessor directives begin with a hash symbol and include #include, #define,
#if, among others. For instance, the following defines a function-like macro to swap two items:

#define SWAP(a, b) { auto tmp = b; b = a; a = tmp; }

We can then use the macro as follows:

int main() {
int x = 3;
int y = 4;
SWAP(x, y);
cout << x << " " << y << endl;

}

Running the resulting executable will print a 4, followed by a 3.

The results of macro expansion can be obtained by passing the -E flag to g++:

$ g++ -E <source>

However, the results can be quite messy if there are #includes, since that directive pulls in the code from the given
file.

CPP macros perform text replacement, so that the code above is equivalent to:

int main() {
int x = 3;
int y = 4;
{ auto tmp = y; y = x; x = tmp; };
cout << x << " " << y << endl;

}

The semicolon following the use of the SWAPmacro remains, denoting an empty statement. This is a problem, however,
in contexts that require a single statement, such as a conditional branch that is not enclosed by a block:

if (x < y)
SWAP(x, y);

(continues on next page)

247

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

else
cout << "no swap" << endl;

A common idiom to avoid this problem is to place the expansion code for the macro inside of a do/while:

#define SWAP(a, b) do { \
auto tmp = b; \
b = a; \
a = tmp; \

} while (false)

Here, we’ve placed a backslash at the end of a line to denote that the next line should be considered a continuation
of the previous one. A do/while loop syntactically ends with a semicolon, so that the semicolon in SWAP(x, y); is
syntactically part of the do/while loop. Thus, the expanded code has the correct syntax:

if (x < y)
do { auto tmp = b; b = a; a = tmp; } while (false);

else
cout << "no swap" << endl;

While textual replacement is useful, it does have drawbacks, stemming from the fact that though the macros are syn-
tactically function like, they do not behave as functions. Specifically, they do not treat arguments as their own entities,
and they do not introduce a separate scope. Consider the following example:

int main() {
int x = 3;
int y = 4;
int z = 5;
SWAP(x < y ? x : y, z);
cout << x << " " << y << " " << z << endl;

}

Running the resulting program produces the unexpected result:

3 4 3

Using g++ -E, we can see what the preprocessed code looks like. Looking only at the output for main(), we find:

int main() {
int x = 3;
int y = 4;
int z = 5;
do {
auto tmp = z;
z = x < y ? x : y;
x < y ? x : y = tmp;

} while (false);
cout << x << " " << y << " " << z << endl;

}

Here, we’ve manually added line breaks and whitespace to make the output more readable; the preprocessor itself
places the macro output on a single line. The culprit is the last generated statement:

248

Programming Language Principles and Paradigms, Release 0.4

x < y ? x : y = tmp;

In C++, the conditional operator ? : and the assignment operator = have the same precedence and associate right to
left, so this is equivalent to:

x < y ? x : (y = tmp);

Since x < y, no assignment happens here. Thus, the value of x is unchanged.

We can fix this problem by placing parentheses around each use of a macro argument:

#define SWAP(a, b) do { \
auto tmp = (b); \
(b) = (a); \
(a) = tmp; \

} while (false)

This now produces the expected result, as the operations are explicitly associated by the parentheses:

int main() {
int x = 3;
int y = 4;
int z = 5;
do {
auto tmp = (z);
(z) = (x < y ? x : y);
(x < y ? x : y) = tmp;

} while (false);
cout << x << " " << y << " " << z << endl;

}

A second problem, however, is not as immediately fixable. Consider what happens when we apply the SWAP macro to
a variable named tmp:

int main() {
int x = 3;
int tmp = 4;
SWAP(tmp, x);
cout << x << " " << tmp << endl;

}

Running this code results in:

3 4

No swap occurs! Again, using g++ -E to examine the output, we see (modulo spacing):

int main() {
int x = 3;
int tmp = 4;
do {
auto tmp = (x);
(x) = (tmp);
(tmp) = tmp;

(continues on next page)

249

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

} while (false);
cout << x << " " << tmp << endl;

}

Since the temporary variable used by SWAP has the same name as an argument, the temporary captures the occurrences
of the argument in the generated code. This is because the macro merely performs text substitution, which does not
ensure that names get resolved to the appropriate scope. (Thus, macros do not actually use call by name, which does
ensure that a name in an argument resolves to the appropriate scope.) The reliance on text replacement makes CPP
a non-hygienic macro system. Other systems, such as Scheme’s, are hygienic, creating a separate scope for names
introduced by a macro and ensuring that arguments are not captured.

27.1 Scheme Macros

The macro system defined as part of the R5RS Scheme specification is hygienic. A macro is introduced by one of the
define-syntax, let-syntax, or letrec-syntax forms, and it binds the given name to the macro. As an example,
the following is a definition of let as a macro:

(define-syntax let
(syntax-rules ()
((let ((name val) ...)
body1 body2 ...

)
((lambda (name ...)
body1 body2 ...

)
val ...
)
)

)
)

The syntax-rules from specifies the rules for the macro transformation. The first argument is a list of literals that
must match between the pattern of the rule and the input. An example is the else identifier inside of a cond form.
In this case, however, there are no literals. The remaining arguments to syntax-rules specify transformations. The
first item in a transformation is the input pattern, and the second is the output pattern. The ... acts like a Kleene star,
matching the previous item to zero or more occurrences in the input. The names that appear in an input pattern but
are not in the list of literals, excepting the first item that is the macro name, are hygienic variables that match input
elements. The variables can then be referenced in the output pattern to specify how to construct the output.

Evaluating the expression above in the global environment binds the name let to a macro that translates to a lambda.

Identifiers introduced by the body of a macro are guaranteed to avoid conflict with other identifiers, and the interpreter
often renames identifiers to avoid such a conflict. Consider the following definition of a swap macro:

(define-syntax swap
(syntax-rules ()
((swap a b)
(let ((tmp b))
(set! b a)
(set! a tmp)

)
)

(continues on next page)

27.1. Scheme Macros 250

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

)
)

This translates a use of swap to an expression that swaps the two arguments through a temporary variable tmp. Thus:

> (define x 3)
> (define y 4)
> (swap x y)
> x
4
> y
3

However, unlike CPP macros, the tmp introduced by the swap macro is distinct from any other tmp:

> (define tmp 5)
> (swap x tmp)
> x
5
> tmp
4

Because macros are hygienic in Scheme, we get the expected behavior.

In order to support macros, the evaluation procedure of the Scheme interpreter evaluates the first item in a list, as usual.
If it evaluates to a macro, then the interpreter performs macro expansion on the rest of the list without first evaluating the
arguments. Any names introduced by the expansion are placed in a separate scope from other names. After expansion,
the interpreter repeats the evaluation process on the result of expansion, so that if the end result is a let expression as
in swap above, the expression is evaluated.

A macro definition can specify multiple pattern rules. Combined with the fact that the result of expansion is evaluated,
this allows a macro to be recursive, as in the following definition of let*:

(define-syntax let*
(syntax-rules ()
((let* ()
body1 body2 ...

)
(let ()
body1 body2 ...

)
)
((let* ((name1 val1) (name2 val2) ...)
body1 body2 ...

)
(let ((name1 val1))
(let* ((name2 val2) ...)
body1 body2 ...

)
)
)

)
)

27.1. Scheme Macros 251

Programming Language Principles and Paradigms, Release 0.4

There is a base-case pattern for when the let* has no bindings, in which case it translates directly into a let. There
is also a recursive pattern for when there is at least one binding, in which case the let* translates into a simpler let*
nested within a let. The ellipsis (...) in a macro definition is similar to a Kleene star (*) in a regular expression,
denoting that the preceding item can be matched zero or more times. Thus, a let* with a single binding matches the
second pattern rule above, where (name2 val2) is matched zero times.

27.2 CPP Macros

We return our attention to CPP macros. Despite their non-hygienic nature, they can be very useful in tasks that involve
metaprogramming.

CPP allows us to use #define to define two types of macros, object-like and function-like macros. An object-lke macro
is a simple text replacement, substituting one sequence of text for another. Historically, a common use was to define
constants:

#define PI 3.1415926535

int main() {
cout << "pi = " << PI << endl;
cout << "tau = " << PI * 2 << endl;

}

Better practice in C++ is to define a constant using const or constexpr.

A function-like macro takes arguments, as in SWAP above, and can substitute the argument text into specific locations
within the replacement text.

A more complex example of using function-like macros is to abstract the definition of multiple pieces of code that
follow the same pattern. Consider the definition of a type to represent a complex number:

struct Complex {
double real;
double imag;

};

ostream &operator<<(ostream &os, Complex c) {
return os << "(" << c.real << "+" << c.imag << "i)";

}

Suppose that in addition to the overloaded stream insertion operator above, we wish to support the arithmetic operations
+, -, and *. These operations all have the same basic form:

Complex operator <op>(Complex a, Complex b) {
return Complex{ <expression for real>, <expression for imag> };

}

Here, we’ve used uniform initialization syntax to initialize a Complex with values for its members. We can then write
a function-like macro to abstract this structure:

#define COMPLEX_OP(op, real_part, imag_part) \
Complex operator op(Complex a, Complex b) { \
return Complex{ real_part, imag_part }; \

}

27.2. CPP Macros 252

Programming Language Principles and Paradigms, Release 0.4

The macro has arguments for each piece that differs between operations, namely the operator, the expression to compute
the real part, and the expression to compute the imaginary part. We can use the macro as follows to define the operations:

COMPLEX_OP(+, a.real+b.real, a.imag+b.imag);
COMPLEX_OP(-, a.real-b.real, a.imag-b.imag);
COMPLEX_OP(*, a.real*b.real - a.imag*b.imag,

a.imag*b.real + a.real*b.imag);

As with our initial SWAP implementation, the trailing semicolon is extraneous but improves readability and interaction
with syntax highlighters. Running the code through the preprocessor with g++ -E, we get (modulo spacing):

Complex operator +(Complex a, Complex b) {
return Complex{ a.real+b.real, a.imag+b.imag };

};
Complex operator -(Complex a, Complex b) {
return Complex{ a.real-b.real, a.imag-b.imag };

};
Complex operator *(Complex a, Complex b) {
return Complex{ a.real*b.real - a.imag*b.imag,

a.imag*b.real + a.real*b.imag };
};

We can then proceed to define operations between Complex and double values. Again, we observe that such an
operation has a specific pattern:

Complex operator <op>(<type1> a, <type2> b) {
return <expr1> <op> <expr2>;

}

Here, <exprN> is the corresponding argument converted to its Complex representation. We can abstract this using a
macro:

#define REAL_OP(op, typeA, typeB, argA, argB) \
Complex operator op(typeA a, typeB b) { \
return argA op argB; \

}

We can also define a macro to convert from a double to a Complex:

#define CONVERT(a) \
(Complex{ a, 0 })

We can then define our operations as follows:

REAL_OP(+, Complex, double, a, CONVERT(b));
REAL_OP(+, double, Complex, CONVERT(a), b);
REAL_OP(-, Complex, double, a, CONVERT(b));
REAL_OP(-, double, Complex, CONVERT(a), b);
REAL_OP(*, Complex, double, a, CONVERT(b));
REAL_OP(*, double, Complex, CONVERT(a), b);

Running this through the preprocessor, we get:

Complex operator +(Complex a, double b) { return a + (Complex{ b, 0 }); };
Complex operator +(double a, Complex b) { return (Complex{ a, 0 }) + b; };

(continues on next page)

27.2. CPP Macros 253

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

Complex operator -(Complex a, double b) { return a - (Complex{ b, 0 }); };
Complex operator -(double a, Complex b) { return (Complex{ a, 0 }) - b; };
Complex operator *(Complex a, double b) { return a * (Complex{ b, 0 }); };
Complex operator *(double a, Complex b) { return (Complex{ a, 0 }) * b; };

We can now use complex numbers as follows:

int main() {
Complex c1{ 3, 4 };
Complex c2{ -1, 2 };
double d = 0.5;
cout << c1 + c2 << endl;
cout << c1 - c2 << endl;
cout << c1 * c2 << endl;
cout << c1 + d << endl;
cout << c1 - d << endl;
cout << c1 * d << endl;
cout << d + c1 << endl;
cout << d - c1 << endl;
cout << d * c1 << endl;

}

This results in:

(2+6i)
(4+2i)
(-11+2i)
(3.5+4i)
(2.5+4i)
(1.5+2i)
(3.5+4i)
(-2.5+-4i)
(1.5+2i)

27.2.1 Stringification and Concatenation

When working with macros, it can be useful to convert a macro argument to a string or to concatenate it with another
token. For instance, suppose we wanted to write an interactive application that would read input from a user and perform
the corresponding action. On complex numbers, the target functions may be as follows:

Complex Complex_conjugate(Complex c) {
return Complex{ c.real, -c.imag };

}

string Complex_polar(Complex c) {
return "(" + to_string(sqrt(pow(c.real, 2) + pow(c.imag, 2))) +
"," + to_string(atan(c.imag / c.real)) + ")";

}

The application would compare the user input to a string representing an action, call the appropriate function, and print
out the result. This has the common pattern:

27.2. CPP Macros 254

Programming Language Principles and Paradigms, Release 0.4

if (<input> == "<action>")
cout << Complex_<action>(<value>) << endl;

Here, we both need a string representation of the action, as well as the ability to concatenate the Complex_ token with
the action token itself. We can define a macro for this pattern as follows:

#define ACTION(str, name, arg) \
if (str == #name) \
cout << Complex_ ## name(arg) << endl

The # preceding a token is the stringification operator, converting the token to a string. The ## between Complex_ and
name is the token pasting operator, concatenating the tokens on either side.

We can then write our application code as follows:

Complex c1 { 3, 4 };
string s;
while (cin >> s) {
ACTION(s, conjugate, c1);
ACTION(s, polar, c1);

}

Running this through the preprocessor, we obtain the desired result:

Complex c1 { 3, 4 };
string s;
while (cin >> s) {
if (s == "conjugate") cout << Complex_conjugate(c1) << endl;
if (s == "polar") cout << Complex_polar(c1) << endl;

}

27.2.2 The Macro Namespace

One pitfall of using CPP macros is that they are not contained within any particular namespace. In fact, a macro, as
long as it is defined, will replace any eligible token, regardless of where the token is located. Thus, defining a macro
is akin to making a particular identifier act as a reserved keyword, unable to be used by the programmer. (This is one
reason why constants are usually better defined as variables qualified const or constexpr than as object-like macros.)

Several conventions are used to avoid polluting the global namespace. The first is to prefix all macros with characters
that are specific to the library defining them in such a way as to avoid conflict with other libraries. For instance, our
complex-number macros may be prefixed with COMPLEX_ to avoid conflicting with other macros or identifiers. The
second strategy is to undefine macros when they are no longer needed, using the #undef preprocessor directive. For
example, at the end of our library code, we may have the following:

#undef COMPLEX_OP
#undef REAL_OP
#undef CONVERT
#undef ACTION

This frees the identifiers to be used for other purposes in later code.

27.2. CPP Macros 255

Programming Language Principles and Paradigms, Release 0.4

27.3 Code Generation

While macros allow us to generate code using the macro facilities provided by a language, there are some cases where
such a facility is unavailable or otherwise insufficient for our purposes. In such a situation, it may be convenient to
write a code generator in an external program, in the same language or in a different language. This technique is also
called automatic programming.

As an example, the R5RS Scheme specification requires implementations to provide combinations of car and cdr up
to four levels deep. For instance, (caar x) should be equivalent to (car (car x)), and (caddar x) should be
equivalent to (car (cdr (cdr (car x)))). Aside from car and cdr themselves, there are 28 combinations that
need to be provided, which would be tedious and error-prone to write by hand. Instead, we can define the following
Python script to generate a Scheme library file:

import itertools

def cadrify(seq):
if len(seq):

return '(c{0}r {1})'.format(seq[0], cadrify(seq[1:]))
return 'x'

def defun(seq):
return '(define (c{0}r x) {1})'.format(''.join(seq), cadrify(seq))

for i in range(2, 5):
for seq in itertools.product(('a', 'd'), repeat=i):

print(defun(seq))

The cadrify() function is a recursive function that takes in a sequence such as ('a', 'd', 'a') and constructs a
call using the first item and the recursive result of the rest of the sequence. In this example, the latter is (cdr (car
x)), so the result would be (car (cdr (car x))). The base case is in which the sequence is empty, producing just
x.

The defun() function takes in a sequence and uses it construct the definition for the appropriate combination. It calls
cadrify() to construct the body. For the sequence ('a', 'd', 'a'), the result is:

(define (cadar x) (car (cdr (car x))))

Finally, the loop at the end produces all combinations of 'a' and 'd' for each length. It uses the library function
itertools.product() to obtain a sequence that is the ith power of the tuple ('a', 'd'). For each combination,
it calls defun() to generate the function for that combination.

Running the script results in:

(define (caar x) (car (car x)))
(define (cadr x) (car (cdr x)))
(define (cdar x) (cdr (car x)))
(define (cddr x) (cdr (cdr x)))
(define (caaar x) (car (car (car x))))
(define (caadr x) (car (car (cdr x))))
...
(define (cdddar x) (cdr (cdr (cdr (car x)))))
(define (cddddr x) (cdr (cdr (cdr (cdr x)))))

We can place the resulting code in a standard library to be loaded by the Scheme interpreter.

27.3. Code Generation 256

CHAPTER

TWENTYEIGHT

TEMPLATE METAPROGRAMMING

Template metaprogramming is a technique that uses templates to produce source code at compile time, which is then
compiled with the rest of the program’s code. It generally refers to a form of compile-time execution that takes advantage
of the language’s rules for template instantiation. Template metaprogramming is most common in C++, though a
handful of other languages also enable it.

The key to template metaprogramming in C++ is template specialization, which allows a specialized definition to be
written for instantiating a template with specific arguments. For example, consider a class template that contains a
static value field that is true if the template argument is int but false otherwise. We can write the generic template as
follows:

template <class T>
struct is_int {
static const bool value = false;

};

We can now define a specialization for this template when the argument is int:

template <>
struct is_int<int> {
static const bool value = true;

};

The template parameter list in a specialization contains the non-specialized parameters, if any. In the case above, there
are none, so it is empty. Then after the name of the template, we provide the full set of arguments for the instantiation,
in this case just int. We then provide the rest of the definition for the instantiation.

Now when we use the template, the compiler uses the specialization if the template argument is compatible with the
specialization, otherwise it uses the generic template:

cout << is_int<double>::value << endl;
cout << is_int<int>::value << endl;

This prints a 0 followed by a 1.

Template specialization enables us to write code that is conditional on a template argument. Combined with recursive
instantiation, this results in template instantiation being Turing complete. Templates do not encode variables that are
mutable, so template metaprogramming is actually a form of functional programming.

257

Programming Language Principles and Paradigms, Release 0.4

28.1 Pairs

As a more complex example, let us define pairs and lists that can be manipulated at compile time. The elements stored
in these structures will be arbitrary types.

Before we proceed to define pairs, we construct a reporting mechanism that allows us to examine results at compile
time. We arrange to include the relevant information in an error message generated by the compiler:

template <class A, int I>
struct report {
static_assert(I < 0, "report");

};

For simplicity, we make use of an integer template parameter, though we could encode numbers using types instead.
When instantiating the report template, the static_assert raises an error if the template argument I is nonnegative.
Consider the following:

report<int, 5> foo;

The compiler will report an error, indicating what instantiation caused the static_assert to fail. In Clang, we get
an error like the following:

pair.cpp:64:3: error: static_assert failed "report"
static_assert(I < 0, "report");
^ ~~~~~

pair.cpp:67:16: note: in instantiation of template class 'report<int, 5>'
requested here

report<int, 5> foo;
^

Using GCC, the error is as follows:

pair.cpp: In instantiation of 'struct report<int, 5>':
pair.cpp:67:16: required from here
main.cpp:64:3: error: static assertion failed: report
static_assert(I < 0, "report");
^

In both compilers, the relevant information is reported, which is that the arguments to the report template are int
and 5.

We can then define a pair template as follows:

template <class First, class Second>
struct pair {
using car = First;
using cdr = Second;

};

Within the template, we define type aliases car and cdr to refer to the first and second items of the pair. Thus,
pair<int, double>::car is an alias for int, while pair<int, double>::cdr is an alias for double.

We can also define type aliases to extract the first and second items from a pair:

28.1. Pairs 258

Programming Language Principles and Paradigms, Release 0.4

template <class Pair>
using car_t = typename Pair::car;
template <class Pair>
using cdr_t = typename Pair::cdr;

The typename keyword is required before Pair::car and Pair::cdr, since we are using a nested type whose enclos-
ing type is dependent on a template parameter. In such a case, C++ cannot determine that we are naming a type rather
than a value, so the typename keyword explicitly indicates that it is a type. Using the aliases above, car_t<pair<int,
double>> is an alias for int, while cdr_t<pair<int, double>> is an alias for double.

In order to represent recursive lists, we need a representation for the empty list:

struct nil {
};

We can now define a template to determine whether or not a list, represented either by the empty list nil or by a nil-
terminated sequence of pairs, is empty. We define a generic template and then a specialization for the case of nil as
the argument:

template <class List>
struct is_empty {
static const bool value = false;

};

template <>
struct is_empty<nil> {
static const bool value = true;

};

In order to use the field value at compile time, it must be a compile-time constant, which we can arrange by making it
both static and const and initializing it with a compile-time constant. With C++14, we can also define global variable
templates to encode the length of a list:

template <class List>
const bool is_empty_v = is_empty<List>::value;

The value of is_empty_v<nil> is true, while is_empty<pair<int, nil>> is false. Then we can determine at
compilation whether or not a list is empty:

using x = pair<char, pair<int, pair<double, nil>>>;
using y = pair<float, pair<bool, nil>>;
using z = nil;
report<x, is_empty_v<x>> a;
report<y, is_empty_v<y>> b;
report<z, is_empty_v<z>> c;

Here, we introduce type aliases for lists, which act as immutable compile-time variables. We then instantiate report
with a type and whether or not it is empty. This results in the following error messages from GCC:

pair.cpp: In instantiation of 'struct report<pair<char, pair<int,
pair<double, nil> > >, 0>':

pair.cpp:82:28: required from here
pair.cpp:73:3: error: static assertion failed: report
static_assert(I < 0, "report");

(continues on next page)

28.1. Pairs 259

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

^~~~~~~~~~~~~
pair.cpp: In instantiation of 'struct report<pair<float, pair<bool,
nil> >, 0>':

pair.cpp:83:28: required from here
pair.cpp:73:3: error: static assertion failed: report
pair.cpp: In instantiation of 'struct report<nil, 1>':
pair.cpp:84:28: required from here
pair.cpp:73:3: error: static assertion failed: report

Examining the integer argument of report, we see that the lists pair<char, pair<int, pair<double, nil>>>
and pair<float, pair<bool, nil>> are not empty, but the list nil is.

We can compute the length of a list using recursion:

template <class List>
struct length {
static const int value = length<cdr_t<List>>::value + 1;

};

template <>
struct length<nil> {
static const int value = 0;

};

template <class List>
const int length_v = length<List>::value;

Here, we are using a value from a recursive instantiation of the length struct. Since value is initialized with an
expression consisting of an operation between compile-time constants, it is also a compile-time constant. The recur-
sion terminates at the specialization for length<nil>, where the value member is directly initialized to 0. As with
is_empty_v, we define a variable template length_v to encode the result. We can compute and report the length of
the x type alias:

report<x, length_v<x>> d;

The first argument to report is arbitrary, since we only care about the second argument, so we just pass x itself. We
get:

pair.cpp: In instantiation of 'struct report<pair<char, pair<int,
pair<double, nil> > >, 3>':

pair.cpp:85:26: required from here
pair.cpp:73:3: error: static assertion failed: report

The relevant information is that the length is 3.

We can define even more complex manipulation on lists. For instance, we can reverse a list as follows:

template <class List, class SoFar>
struct reverse_helper {
using type =
typename reverse_helper<cdr_t<List>,

pair<car_t<List>, SoFar>>::type;
};

(continues on next page)

28.1. Pairs 260

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

template <class SoFar>
struct reverse_helper<nil, SoFar> {
using type = SoFar;

};

template <class List>
using reverse_t = typename reverse_helper<List, nil>::type;

Here, we use a helper template to perform the reversal, where the first template argument is the remaining list and
the second is the reversed list so far. In each step, we compute a new partial result as pair<car_t<List>, SoFar>,
adding the first item in the remaining list to the front of the previous partial result. Then cdr_t<List> is the remaining
list excluding the first item.

The base case of the recursion is when the remaining list is nil, in which case the final result is the same as the partial
result. We accomplish this with a partial class template specialization, which allows us to specialize only some of
the arguments to a class template1. In reverse_helper, we specialize the first argument, so that any instantiation of
reverse_helper where the first argument is nil will use the specialization. The specialization retains a template
parameter, which is included in its parameter list. The full argument list appears after the template name, including
both the specialized and unspecialized arguments.

We seed the whole computation in the reverse_t alias template with the original list and empty partial result. We
apply reverse_t to x:

report<reverse_t<x>, 0> e;

Here, the second argument is an arbitrary nonnegative value. We get:

pair.cpp: In instantiation of 'struct report<pair<double, pair<int,
pair<char, nil> > >, 0>':

pair.cpp:86:27: required from here
pair.cpp:73:3: error: static assertion failed: report

As a last example, we can now write a template to append two lists:

template <class List1, class List2>
struct append {
using type =
pair<car_t<List1>,

typename append<cdr_t<List1>, List2>::type>;
};

template <class List2>
struct append<nil, List2> {
using type = List2;

};

template <class List1, class List2>
using append_t = typename append<List1, List2>::type;

Here, the template appends the second argument to the first argument. This is accomplished by prepending the first
item of the first list to the result of appending the second list to the rest of the first list. The recursion terminates when
the first list is empty. Applying append_t to x and y:

1 C++ only allows partial specialization on class templates. Function templates may be specialized, but they cannot be partially specialized.

28.1. Pairs 261

Programming Language Principles and Paradigms, Release 0.4

report<append_t<x, y>, 0> f;

We get:

pair.cpp: In instantiation of 'struct report<pair<char, pair<int,
pair<double, pair<float, pair<bool, nil> > > > >, 0>':

pair.cpp:87:29: required from here
pair.cpp:73:3: error: static assertion failed: report

28.2 Numerical Computations

Using just recursion and template specialization, we could encode numbers using a system like Church numerals.
However, C++ also supports integral template parameters, so we can perform compile-time numerical computations
using an integer parameter rather than just types.

As an example, consider the following definition of a template to compute the factorial of the template parameter:

template <int N>
struct factorial {
static const long long value = N * factorial<N - 1>::value;

};

template <>
struct factorial<0> {
static const long long value = 1;

};

The generic template multiplies its template argument N by the result of computing factorial on N - 1. The base case
is provided by the specialization for when the argument is 0, where the factorial is 1.

Here, we’ve used a long long to hold the computed value, so that larger results can be computed than can be repre-
sented by int. We define a template to report a result as follows:

template <long long N>
struct report {
static_assert(N > 0 && N < 0, "report");

};

The condition of the static_assert is written to depend on the template parameter so that the assertion fails during
instantiation, rather than before. Then if we compute the factorial of 5:

report<factorial<5>::value> a;

We get:

factorial.cpp: In instantiation of 'struct report<120ll>':
factorial.cpp:37:34: required from here
factorial.cpp:33:3: error: static assertion failed: report
static_assert(N > 0 && N < 0, "report");
^

This shows that the result is 120.

28.2. Numerical Computations 262

Programming Language Principles and Paradigms, Release 0.4

We can use a macro to make our program more generic, encoding the argument to factorial as a macro that can be
defined at compile time:

report<factorial<NUM>::value> a;

We can even provide a default value:

#ifndef NUM
#define NUM 5
#endif

Then at the command line, we can specify the argument as follows:

$ g++ --std=c++14 factorial.cpp -DNUM=20
factorial.cpp: In instantiation of 'struct report<2432902008176640000ll>':
factorial.cpp:27:33: required from here
factorial.cpp:23:3: error: static assertion failed: report
static_assert(N > 0 && N < 0, "report");
^

The command-line argument -D in GCC and Clang allows us to define a macro from the command line.

Suppose we now attempt to compute the factorial of a negative number:

$ g++ --std=c++14 factorial.cpp -DNUM=-1
factorial.cpp: In instantiation of 'const long long int
factorial<-900>::value':

factorial.cpp:23:36: recursively required from 'const long long int
factorial<-2>::value'

factorial.cpp:23:36: required from 'const long long int
factorial<-1>::value'

factorial.cpp:37:27: required from here
factorial.cpp:23:36: fatal error: template instantiation depth exceeds
maximum of 900 (use -ftemplate-depth= to increase the maximum)
static const long long value = N * factorial<N - 1>::value;

^
compilation terminated.

We see that the recursion never reaches the base case of 0. Instead, the compiler terminates compilation when the
recursion depth reaches its limit. We can attempt to add an assertion that the template argument is non-negative as
follows:

template <int N>
struct factorial {
static_assert(N >= 0, "argument to factorial must be non-negative");
static const long long value = N * factorial<N - 1>::value;

};

However, this does not prevent the recursive instantiation, so that what we get is an even longer set of error messages:

factorial.cpp: In instantiation of 'struct factorial<-1>':
factorial.cpp:38:25: required from here
factorial.cpp:23:3: error: static assertion failed: argument to factorial
must be non-negative
static_assert(N >= 0, "argument to factorial must be non-negative");

(continues on next page)

28.2. Numerical Computations 263

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

^
...
factorial.cpp: In instantiation of 'struct factorial<-900>':
factorial.cpp:24:36: recursively required from 'const long long int
factorial<-2>::value'

factorial.cpp:24:36: required from 'const long long int
factorial<-1>::value'

factorial.cpp:38:27: required from here
factorial.cpp:23:3: error: static assertion failed: argument to factorial
must be non-negative

factorial.cpp: In instantiation of 'const long long int
factorial<-900>::value':

factorial.cpp:24:36: recursively required from 'const long long int
factorial<-2>::value'

factorial.cpp:24:36: required from 'const long long int
factorial<-1>::value'

factorial.cpp:38:27: required from here
factorial.cpp:24:36: fatal error: template instantiation depth exceeds
maximum of 900 (use -ftemplate-depth= to increase the maximum)
static const long long value = N * factorial<N - 1>::value;

^
compilation terminated.

Here, we have removed the intermediate error messages between -1 and -900.

In order to actually prevent recursive instantiation when the argument is negative, we can offload the actual recursive
work to a helper template. We can then check that the argument is non-negative in factorial, converting the argument
to 0 if it is negative:

template <int N>
struct factorial_helper {
static const long long value = N * factorial_helper<N - 1>::value;

};

template <>
struct factorial_helper<0> {
static const long long value = 1;

};

template <int N>
struct factorial {
static_assert(N >= 0, "argument to factorial must be non-negative");
static const long long value = factorial_helper<N >= 0 ? N : 0>::value;

};

The key here is that factorial only instantiates factorial_helper<0> if the argument of factorial is nonnega-
tive. Thus, we get:

$ g++ --std=c++14 factorial.cpp -DNUM=-1
factorial.cpp: In instantiation of 'struct factorial<-1>':
factorial.cpp:38:24: required from here
factorial.cpp:17:3: error: static assertion failed: argument to factorial
must be non-negative

(continues on next page)

28.2. Numerical Computations 264

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

static_assert(N >= 0, "argument to factorial must be non-negative");
^

factorial.cpp: In instantiation of 'struct report<1ll>':
factorial.cpp:38:33: required from here
factorial.cpp:34:3: error: static assertion failed: report
static_assert(N > 0 && N < 0, "report");
^

We no longer have an unbounded recursion. This demonstrates how we can achieve conditional compilation, even
without a built-in conditional construct.

An alternative strategy is to use a second, defaulted template argument that tracks whether or not the first argument is
positive:

template <int N, bool /*Positive*/ = (N > 0)>
struct factorial {
static const long long value = N * factorial<N - 1>::value;

};

template <int N>
struct factorial<N, false> {
static const long long value = 1;

};

When we instantiate factorial with a positive argument, as in factorial<5>, the second argument is defaulted to
true. Since that does not match the partial specialization, the instantiation uses the generic version of the template.
On the other hand, if we instantiate the template with a non-positive argument, such as in factorial<0>, the second
argument defaults to false, resulting in the partial specialization being used. Thus, the defaulted argument serves to
control whether the generic or specialized version is used. Since it’s not used for anything else, we need not name the
argument, but we have included the /*Positive*/ comment to document the argument’s purpose.

As another example of a numerical computation, the following computes Fibonacci numbers at compile time. For
simplicity, we do not implement error checking for negative arguments:

template <int N>
struct fib {
static const long long value = fib<N - 1>::value + fib<N - 2>::value;

};

template <>
struct fib<1> {
static const long long value = 1;

};

template <>
struct fib<0> {
static const long long value = 0;

};

We have two base cases, provided by separate specializations for when the argument is 0 or 1. As with factorial, we
use a macro to represent the input:

report<fib<NUM>::value> a;

28.2. Numerical Computations 265

Programming Language Principles and Paradigms, Release 0.4

We can then specify the input at the command line:

$ g++ --std=c++14 fib.cpp -DNUM=7
fib.cpp: In instantiation of 'struct report<13ll>':
fib.cpp:26:27: required from here
fib.cpp:22:3: error: static assertion failed: report
static_assert(N > 0 && N < 0, "report");
^

We can even provide the largest input for which the Fibonacci number is representable as a long long:

$ g++ --std=c++14 fib.cpp -DNUM=92
fib.cpp: In instantiation of 'struct report<7540113804746346429ll>':
fib.cpp:26:27: required from here
fib.cpp:22:3: error: static assertion failed: report
static_assert(N > 0 && N < 0, "report");
^

This computation only takes a fraction of a second, since the C++ compiler only instantiates a template once for a given
set of arguments within a single translation unit. Thus, the compiler automatically performs memoization, saving the
result of a single computation rather than repeating it.

28.3 Templates and Function Overloading

While function templates can also be specialized, a function template can also be overloaded with a non-template
function. In performing overload resolution, C++ prefers a non-template function over a template instantiation, as long
as the parameter and return types of the template instantiation are not superior to the non-template in the given context.

As an example, consider the following function template to convert a value to a string representation:

template <class T>
string to_string(const T &item) {
std::ostringstream oss;
oss << item;
return oss.str();

}

We can make use of this template, with the compiler performing template-argument deduction, as follows:

int main() {
cout << to_string(Complex{ 3, 3.14 }) << endl;
cout << to_string(3.14) << endl;
cout << to_string(true) << endl;

}

This results in:

(3+3.14i)
3.14
1

If we then decide that the representation of a bool is undesirable, we can write a function overload as follows:

28.3. Templates and Function Overloading 266

Programming Language Principles and Paradigms, Release 0.4

string to_string(bool item) {
return item ? "true" : "false";

}

Since this is a non-template function, C++ will prefer it to the template instantiation to_string<bool> when the
argument type is bool. Thus, the same code in main() now results in:

(3+3.14i)
3.14
true

28.4 SFINAE

In considering function overloads, the C++ compiler does not consider it an error if the types and expressions used in
the header of a function template are unsuitable for a particular set of template arguments. This is known as substitution
failure is not an error (SFINAE), and it is a powerful feature of templates in C++. Rather than producing an error in
such a case, the compiler simply removes the template from the set of candidate functions to be considered in overload
resolution.

As an example, suppose we wanted to modify our to_string() to use std::to_string() for the types for which
the latter is defined. We can place a dependence on the existence of a suitable std::to_string() overload in the
header of a new function template:

template <class T>
auto to_string(const T &item) -> decltype(std::to_string(item)) {
return std::to_string(item);

}

Here, the trailing return type is necessary so that std::to_string(item) appears in the header of the function. Then
the function template will fail on substitution if there is no overload of std::to_string() such that it can be applied
to a value of the template argument. For example, consider calling our to_string() on a Complex object:

cout << to_string(Complex{ 3, 3.14 }) << endl;

Our previous to_string() template is still viable, so it is considered in overload resolution. The new template we
defined above, however, fails to substitute, since there is no definition of std::to_string() that can be applied to
a Complex. Thus, rather than being an error, the second template is merely removed from consideration, and the call
resolves to the original template.

With the second template definition, we can still call to_string() on a bool, since C++ will still prefer the non-
template function. However, we run into trouble when attempting to call it on a double:

to_string.cpp:82:11: error: call to 'to_string' is ambiguous
cout << to_string(3.14) << endl;

^~~~~~~~~~
to_string.cpp:65:8: note: candidate function [with T = double]
string to_string(const T &item) {

^
to_string.cpp:72:6: note: candidate function [with T = double]
auto to_string(const T &item) -> decltype(std::to_string(item)) {

^
to_string.cpp:76:8: note: candidate function

(continues on next page)

28.4. SFINAE 267

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

string to_string(bool item) {
^

1 error generated.

Both templates are equally viable when the argument is of type double, so the compiler cannot disambiguate between
them. The non-template overload that takes in a bool is also viable, since a double can be converted to a bool, so it
is reported in the error message even though it is inferior to either template.

In order to fix this problem, we need to arrange for the first function template to be nonviable when there is a compatible
overload for std::to_string(). This requires ensuring that there is a substitution failure for the template when that
is the case.

28.5 Ensuring a Substitution Failure

There are many tools that are used to ensure a substitution failure. Perhaps the most fundamental is the enable_if
template, defined in the standard library in the <type_traits> header as of C++11. We can also define it ourselves
as follows:

template <bool B, class T>
struct enable_if {
typedef T type;

};

template <class T>
struct enable_if<false, T> {
};

The generic template takes in a bool and a type and defines a member alias for the type argument. The specialization
elides this alias when the bool argument is false. C++14 additionally defines enable_if_t as an alias template, as in
the following:

template <bool B, class T>
using enable_if_t = typename enable_if<B, T>::type;

We can use enable_if or enable_if_t to induce a failure, as in the following definition for factorial:

template <int N>
struct factorial {
static const std::enable_if_t<N >= 0, long long> value =
N * factorial<N - 1>::value;

};

When the template argument N is negative, the enable_if instantiation has no type member, so we get an error:

In file included from factorial.cpp:1:0:
/opt/local/include/gcc5/c++/type_traits: In substitution of

'template<bool _Cond, class _Tp> using enable_if_t = typename
std::enable_if::type [with bool _Cond = false; _Tp = long long
int]':

factorial.cpp:36:52: required from 'struct factorial<-1>'
factorial.cpp:51:25: required from here
/opt/local/include/gcc5/c++/type_traits:2388:61: error: no type

(continues on next page)

28.5. Ensuring a Substitution Failure 268

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

named 'type' in 'struct std::enable_if<false, long long int>'
using enable_if_t = typename enable_if<_Cond, _Tp>::type;

^
factorial.cpp: In function 'int main()':
factorial.cpp:51:10: error: 'value' is not a member of 'factorial<-1>'
report<factorial<NUM>::value> a;

^
factorial.cpp:51:10: error: 'value' is not a member of 'factorial<-1>'
factorial.cpp:51:32: error: template argument 1 is invalid
report<factorial<NUM>::value> a;

^

This provides us another mechanism to prevent instantiation of a template with a semantically invalid argument. In this
case, substitution failure is an error, since the failure did not occur in the header of a function template.

Another option we have is to rely on the fact that variadic arguments are the least preferred alternative in function-
overload resolution. Thus, we can write our overloads as helper functions or function templates, with an additional
argument to be considered in overload resolution:

string to_string_helper(bool item, int ignored) {
return item ? "true" : "false";

}

template <class T>
auto to_string_helper(const T &item, int ignored)
-> decltype(std::to_string(item)) {
return std::to_string(item);

}

template <class T>
string to_string_helper(const T &item, ...) {
std::ostringstream oss;
oss << item;
return oss.str();

}

template <class T>
string to_string(const T &item) {
return to_string_helper(item, 0);

}

Here, to_string() calls to_string_helper() with the item and a dummy integer argument. We define three over-
loads of to_string_helper() as before, except that the overloads for bool and types for which std::to_string()
is defined take in an extra int argument. The generic overload that is viable for all types, however, uses variadic argu-
ments. Since variadic arguments have the lowest priority in function-overload resolution, if both the generic overload
and another overload are viable, the latter is chosen. Thus, the overload that uses std::to_string() is preferred
when to_string_helper() is called on a double. We no longer have an ambiguity, and we get the desired result
when the program is compiled and run:

(3+3.14i)
3.140000
true

28.5. Ensuring a Substitution Failure 269

Programming Language Principles and Paradigms, Release 0.4

28.6 Variadic Templates

As of the C++11 standard, C++ supports variadic templates, which are templates that take a variable number of argu-
ments. Both class and function templates can be variadic, and variadic templates enable us to write variadic function
overloads that are type safe, unlike C-style varargs.

As an example, consider the definition of a tuple template that encapsulates multiple items of arbitrary type. We can
declare such a template as follows:

template <class... Types>
struct tuple;

The template parameter Types is a parameter pack, which accepts zero or more arguments. In this case, the ellipsis
follows the class keyword, so the arguments accepted by the parameter pack are types. We can then declare a tuple
as follows:

tuple<> t0;
tuple<int> t1;
tuple<double, char, int> t2;

In the first instantiation, the parameter pack Types is empty, since no template arguments were provided. In the second
instantiation, Types is associated with the single argument int, and in the last case, Types is associated with the three
arguments double, char, and int.

Within the template definition, we can use the sizeof... operator to determine the size of the parameter pack. Thus,
we can compute the size of the tuple as:

static const int size = sizeof...(Types);

Parameter packs are often processed recursively. It is natural to define a tuple itself recursively as a combination of the
first data item and a smaller tuple containing all but the first. The following is a specialization for a non-empty tuple
(i.e. a tuple with at least one element):

template <class First, class... Rest>
struct tuple<First, Rest...> {
static const int size = 1 + sizeof...(Rest);

using first_type = First;
using rest_type = tuple<Rest...>;

first_type first;
rest_type rest;

// ...
};

The ellipsis, when it appears to the right of a pattern containing a parameter pack, expands the pattern into comma-
separated instantiations of the pattern, one per item in the parameter pack. Thus, if First is associated with double
and Rest is associated with char and int, tuple<First, Rest...> expands to tuple<double, char, int>.

In the code above, we have introduced type aliases for the type of the first data item and the type of the rest of the tuple.
We then declared data members for each of these components. We can write a constructor to initialize them as follows:

tuple(First f, Rest... r) : first(f), rest(r...) {}

With First as double and Rest as above, this expands to the equivalent of:

28.6. Variadic Templates 270

Programming Language Principles and Paradigms, Release 0.4

tuple(double f, char r0, int r1) :
first(f), rest(r0, r1) {}

Both the parameter Rest... r as well as the use of the parameter r... expand, with r replaced by a unique identifier
in each instantiation of the pattern.

The full definition of the template specialization is as follows:

template <class First, class... Rest>
struct tuple<First, Rest...> {
static const int size = 1 + sizeof...(Rest);

using first_type = First;
using rest_type = tuple<Rest...>;

first_type first;
rest_type rest;

tuple(First f, Rest... r) : first(f), rest(r...) {}
};

Since this is a recursive definition, we need a base case to terminate the recursion. It is natural to choose an empty
tuple as the base case. We can define this with another specialization:

template <>
struct tuple<> {
static const int size = 0;

};

To facilitate using a tuple, we can write a function template to construct a tuple. This can then take advantage of
argument deduction for function templates, which is not available for class templates prior to C++17. We write a
make_tuple variadic function template as follows:

template <class... Types>
tuple<Types...> make_tuple(Types... items) {
return tuple<Types...>(items...);

}

We can now make use of this function template to construct a tuple:

tuple<int> t1 = make_tuple(3);
tuple<double, char, int> t2 = make_tuple(4.9, 'c', 3);

While we now have the ability to construct a tuple, we have not yet provided a convenient mechanism for accessing
individual elements from a tuple. To do so, we can write a function template as follows:

template<int Index, class Tuple>
auto &get(Tuple &tup) {
static_assert(Index >= 0 and Index < Tuple::size, "bad index");
if constexpr (Index == 0) {
return tup.first;

} else {
return get<Index - 1>(tup.rest);

}
}

28.6. Variadic Templates 271

Programming Language Principles and Paradigms, Release 0.4

Here, we make use of C++14’s return type deduction to avoid computing the type of a tuple element ourselves. In
addition, we use a C++17 constexpr if statement to handle both the recursive and base case within a single function
template. Such a conditional requires a compile-time constant as the test, and the conditional is resolved at compile
time.

To use get(), we need to explicitly provide a value for the Index template parameter, since it cannot be deduced from
the function arguments. We can rely on argument deduction for the second Tuple template parameter:

tuple<double, char, int> t2 = make_tuple(4.9, 'c', 3);
cout << get<0>(t2) << endl;
cout << get<1>(t2) << endl;
cout << get<2>(t2) << endl;
++get<0>(t2);
++get<1>(t2);
++get<2>(t2);
cout << get<0>(t2) << endl;
cout << get<1>(t2) << endl;
cout << get<2>(t2) << endl;

This results in:

4.9
c
3
5.9
d
4

The standard library provides a definition of tuple along with make_tuple() and get() in the <tuple> header.

28.6.1 Alternate Pre-C++14 Implementation

Without a constexpr if statement, we would need to write separate function templates for the recursive case of get()
with Index >= 0 and for the base case of Index == 0. However, since C++ function templates do not allow partial
specialization, we would need to wrap these cases within a class template, which we can then partially specialize. We
proceed to do so to demonstrate this technique.

To start off, we first write a class template to contain a reference to a single element from a tuple. We declare it as
follows:

template <int Index, class Tuple>
struct tuple_element;

The parameter Index is the index corresponding to the item referenced by a tuple_element, and Tuple is the type
of the tuple itself. We can then write the base case as follows:

template <class Tuple>
struct tuple_element<0, Tuple> {
using type = typename Tuple::first_type;

type &item;

tuple_element(Tuple &t) : item(t.first) {}
};

28.6. Variadic Templates 272

Programming Language Principles and Paradigms, Release 0.4

The type of the element at index 0 is aliased by the first_type member of a tuple. The element itself is represented
by the first data member of a tuple object. Thus, we initialize our reference to the item with the first member of
the tuple argument to the constructor. We also introduce a type alias type to refer to the type of the item.

The recursive case decrements the index and passes off the computation to a tuple_element instantiated with all but
the first item in a tuple:

template <int Index, class Tuple>
struct tuple_element {
using rest_type = tuple_element<Index - 1,

typename Tuple::rest_type>;
using type = typename rest_type::type;

type &item;

tuple_element(Tuple &t) : item(rest_type(t.rest).item) {}
};

The rest_typemember alias of a tuple is the type representing all but the first item in the tuple. We alias rest_type
in tuple_element to recursively refer to a tuple_elementwith a decremented index and the rest_type of the tuple.
We then arrange to retrieve the item from this recursive instantiation. The constructor creates a smaller tuple_element
and initializes item to refer to the item contained in the smaller tuple_element. We similarly alias type to refer to
the type contained in the smaller tuple_element.

The following is an alias template for the type of a tuple element:

template <int Index, class Tuple>
using tuple_element_t = typename tuple_element<Index, Tuple>::type;

We can now write a function template to retrieve an item out of a tuple:

template <int Index, class... Types>
tuple_element_t<Index, tuple<Types...>> &get(tuple<Types...> &t) {
return tuple_element<Index, tuple<Types...>>(t).item;

}

The work is offloaded to the tuple_element class template, out of which we retrieve both the type of the element and
the element itself.

28.6. Variadic Templates 273

CHAPTER

TWENTYNINE

EXAMPLE: MULTIDIMENSIONAL ARRAYS

As an extended example of using metaprogramming to build a complex system, let’s consider the implementation of a
multidimensional array library in C++. Built-in C++ arrays are very limited: they represent only a linear sequence of
elements, and they do not carry any size information. Multidimensional arrays can be represented by arrays of arrays,
but this representation can be cumbersome to use and can suffer from poor spatial locality. Instead, most applications
linearize a multidimensional array and map a multidimensional index to a linear index. We will use this strategy, but
we will abstract the translation logic behind an ADT interface.

29.1 Points

We start with an abstraction for a multidimensional index, which we call a point. A point consists of a sequence of
integer indices, such as (3, 4, 5) for a three-dimensional index. We define a point template as follows:

template <int N>
struct point {
int coords[N];

int &operator[](int i) {
return coords[i];

}

const int &operator[](int i) const {
return coords[i];

}
};

The template is parameterized by the dimensionality of the point, and its data representation is an array of coordinates.
We overload the index operator for both const and non-const points.

We provide a stream-insertion operator overload as follows:

template <int N>
std::ostream &operator<<(std::ostream &os, const point<N> &p) {
os << "(" << p[0];
for (int i = 1; i < N; i++) {
os << "," << p[i];

}
return os << ")";

}

274

Programming Language Principles and Paradigms, Release 0.4

In order to work with points, it is useful to have point-wise arithmetic operations on points, as well as comparison
operators. For instance, the following are possible definitions of addition and equality:

template <int N>
point<N> operator+(const point<N> &a, const point<N> &b) {
point<N> result;
for (int i = 0; i < N; i++)
result[i] = a[i] + b[i];

return result;
}

template <int N>
bool operator==(const point<N> &a, const point<N> &b) {
bool result = true;
for (int i = 0; i < N; i++)
result = result && (a[i] == b[i]);

return result;
}

There is a lot of similarity between these two functions: they share the same template header, arguments, and overall
body structure, with an initial value, a loop to update the value, and a return of that value. Rather than writing several
arithmetic and comparison operations with this structure, we can use a function-like macro to abstract the common
structure:

#define POINT_OP(op, rettype, header, action, retval) \
template <int N> \
rettype operator op(const point<N> &a, const point<N> &b) { \
header; \
for (int i = 0; i < N; i++) \
action; \

return retval; \
}

Then an arithmetic operators such as + or - can be defined as follows:

POINT_OP(+, point<N>, point<N> result,
result[i] = a[i] + b[i], result);

POINT_OP(-, point<N>, point<N> result,
result[i] = a[i] - b[i], result);

These in turn are very similar, with the only difference the two occurrences of + or -. We can then abstract this structure
further for arithmetic operations:

#define POINT_ARITH_OP(op) \
POINT_OP(op, point<N>, point<N> result, \

result[i] = a[i] op b[i], result)

Similarly, we can abstract the structure for comparison operations:

#define POINT_COMP_OP(op, start, combiner) \
POINT_OP(op, bool, bool result = start, \

result = result combiner (a[i] op b[i]), result)

We can now use these macros to define the point operations:

29.1. Points 275

Programming Language Principles and Paradigms, Release 0.4

POINT_ARITH_OP(+);
POINT_ARITH_OP(-);
POINT_ARITH_OP(*);
POINT_ARITH_OP(/);

POINT_COMP_OP(==, true, &&);
POINT_COMP_OP(!=, false, ||);
POINT_COMP_OP(<, true, &&);
POINT_COMP_OP(<=, true, &&);
POINT_COMP_OP(>, true, &&);
POINT_COMP_OP(>=, true, &&);

Compared to writing ten separate functions, this strategy has much less repetition.

One last operation that would be useful is to construct a point of the desired dimensionality from a sequence of coor-
dinates, analogous to make_tuple() from the previous section. We can define a variadic function to do so as follows,
giving it the name pt() for succinctness:

template <class... Is>
point<sizeof...(Is)> pt(Is... is) {
return point<sizeof...(Is)>{{ is... }};

}

We use the sizeof... operator to compute the dimensionality. The nested initializer lists are required, the outer one
for the point struct itself and the inner one for initializing its coords member, since the latter is an array.

We can now perform operations on points:

cout << (pt(3, 4) + pt(1, -2)) << endl;
cout << (pt(1, 2, 3) < pt(3, 4, 5)) << endl;

This results in:

(4,2)
1

29.2 Domains

The domain of an array is the set of points that it maps to elements. A domain is rectangular if the start and end index
for each dimension is independent of the indices for the other dimensions. Thus, an array over a rectangular domain
maps a rectangular region of space to elements.

We can represent a rectangular domain by an inclusive lower-bound point and an exclusive upper-bound point:

template <int N>
struct rectdomain {
point<N> lwb; // inclusive lower bound
point<N> upb; // exclusive upper bound

// Returns the number of points in this domain.
int size() const {
if (!(lwb < upb))
return 0;

(continues on next page)

29.2. Domains 276

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

int result = 1;
for (int i = 0; i < N; i++) {
// multiple by the span of each dimension
result *= upb[i] - lwb[i];

}
return result;

}
};

We can define an iterator over a rectangular domain as follows, writing it as a nested class within the rectdomain
template:

template <int N>
struct rectdomain {
...

struct iterator {
point<N> lwb; // inclusive lower bound
point<N> upb; // inclusive upper bound
point<N> current; // current item

// Returns the current point.
point<N> operator*() const {
return current;

}

// Moves this iterator to the next point in the domain.
iterator &operator++() {
// Increment starting at the last dimension.
for (int i = N - 1; i >= 0; i--) {
current[i]++;
// If this dimension is within bounds, then we are done.
if (current[i] < upb[i])
return *this;

// Otherwise, reset this dimension to its minimum and move
// on to the previous one.
current[i] = lwb[i];

}
// We ran out of dimensions to increment, set this to an end
// iterator.
current = upb;
return *this;

}

bool operator==(const iterator &rhs) const {
return current == rhs.current;

}

bool operator!=(const iterator &rhs) const {
return !operator==(rhs);

}
};

(continues on next page)

29.2. Domains 277

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

// Return an iterator that is set to the inclusive lower-bound
// point.
iterator begin() const {
return iterator{ lwb, upb, lwb };

}

// Return an iterator that is set to the exclusive upper-bound
// point.
iterator end() const {
return iterator{ lwb, upb, upb };

}
};

The iterator keeps track of the lower and upper bounds, as well as the current point. Incrementing an iterator increments
the last coordinate of the current point, and if that reaches the upper bound for that coordinate, it is set to the lower bound
and the previous coordinate is incremented instead. This process is repeated as necessary, and if the first coordinate
reaches its upper bound, the iterator reaches the end.

We can now use rectangular domains as follows:

for (auto p : rectdomain<3>{ pt(1, 2, 3), pt(3, 4, 5) })
cout << p << endl;

This results in:

(1,2,3)
(1,2,4)
(1,3,3)
(1,3,4)
(2,2,3)
(2,2,4)
(2,3,3)
(2,3,4)

29.3 Arrays

We can now proceed to define an ADT for a multidimensional array. We can represent it with a rectangular domain
and a C++ array to store the elements. We also keep track of the size of each dimension for the purposes of index
computations. The following is an implementation:

template <class T, int N>
struct ndarray {
rectdomain<N> domain; // domain of this array
int sizes[N]; // cached size of each dimension
T *data; // storage for the elements

// Constructs an array with the given domain, default initializing
// the elements.
ndarray(const rectdomain<N> &dom)
: domain(dom), data(new T[dom.size()]) {

(continues on next page)

29.3. Arrays 278

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

// Compute and store sizes of each dimension.
for (int i = 0; i < N; i++) {
sizes[i] = domain.upb[i] - domain.lwb[i];

}
}

// Copy constructor does a deep copy.
ndarray(const ndarray &rhs)
: domain(rhs.domain), data(new T[domain.size()]) {
std::copy(rhs.data, rhs.data + domain.size(), data);
std::copy(rhs.sizes, rhs.sizes + N, sizes);

}

// Assignment operator does a deep copy.
ndarray &operator=(const ndarray &rhs) {
if (&rhs == this)
return *this;

delete[] data;
domain = rhs.domain;
data = new T[domain.size()];
std::copy(rhs.data, rhs.data + domain.size(), data);
std::copy(rhs.sizes, rhs.sizes + N, sizes);
return *this;

}

// Destructor deletes the underlying storage and the elements
// within.
~ndarray() {
delete[] data;

}

// Translates a multidimensional point index into a
// single-dimensional index into the storage array.
int indexof(const point<N> &index) const;

// Returns the element at the given multidimensional index.
T &operator[](const point<N> &index) {
return data[indexof(index)];

}

// Returns the element at the given multidimensional index.
const T &operator[](const point<N> &index) const {
return data[indexof(index)];

}
};

The class template is parameterized by the element type and dimensionality. A constructor takes in a rectangular do-
main, allocates an underlying array of the appropriate size to hold the elements, and stores the size of each dimension.
The Big Three are implemented as needed. (We elide the move constructor and move assignment operator for sim-
plicity.) We then have a function to translate a multidimensional index into a linear one, which the overloaded index
operators use to obtain an element.

The indexof() function uses the combination of the input point and the size of each dimension to linearize the index.

29.3. Arrays 279

https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

Programming Language Principles and Paradigms, Release 0.4

In our representation, the array is stored in row-major format, so that the last dimension is the contiguous one:

template <class T, int N>
int ndarray<T, N>::indexof(const point<N> &index) const {
int result = index[0] - domain.lwb[0];
for (int i = 1; i < N; i++) {
result = result * sizes[i-1] + (index[i] - domain.lwb[i]);

}
return result;

}

Since the value of N is a compile-time constant, this loop can be trivially unrolled by the compiler, eliminating any
branching and resulting in a faster computation.

29.4 Stencil

We can now use arrays to perform a stencil computation, which iteratively computes the value of a grid point based
on its previous value and the previous values of its neighbors. Figure 29.1 is an example of a stencil update associated
with Conway’s Game of Life, on a 3× 3 grid.

0 0 0 0 0

0 1 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

Figure 29.1: Stencil update associated with Conway’s Game of Life.

We use two grids, one for the previous timestep and one for the current one. We use ghost regions at the edges of the
grids, extending each edge by an extra point, to avoid having to do separate computations at the boundaries.

The following constructs three-dimensional grids of size 𝑥𝑑𝑖𝑚× 𝑦𝑑𝑖𝑚× 𝑧𝑑𝑖𝑚, with ghost regions:

rectdomain<3> domain{ pt(-1, -1, -1), pt(xdim+1, ydim+1, zdim+1) };
rectdomain<3> interior{ pt(0, 0, 0), pt(xdim, ydim, zdim) };
ndarray<double, 3> gridA(domain);
ndarray<double, 3> gridB(domain);

We initialize the grids as needed and then perform an iterative stencil computation as follows:

void probe(ndarray<double, 3> *gridA_ptr,
ndarray<double, 3> *gridB_ptr,

(continues on next page)

29.4. Stencil 280

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

const rectdomain<3> &interior, int steps) {
for (int i = 0; i < steps; i++) {
ndarray<double, 3> &gridA = *gridA_ptr;
ndarray<double, 3> &gridB = *gridB_ptr;

for (auto p : interior) {
gridB[p] =
gridA[p + pt(0, 0, 1)] +
gridA[p + pt(0, 0, -1)] +
gridA[p + pt(0, 1, 0)] +
gridA[p + pt(0, -1, 0)] +
gridA[p + pt(1, 0, 0)] +
gridA[p + pt(-1, 0, 0)] +
WEIGHT * gridA[p];

}

// Swap pointers
std::swap(gridA_ptr, gridB_ptr);

}
}

We make use of iteration over a rectangular domain, arithmetic over points, and using points to index into the multidi-
mensional array. At the end of each timestep, we swap which grid is the current and which is the previous.

While this code is simple to write, it does not perform well on many compilers. The linearized iteration over the
rectangular domain can prevent a compiler from optimizing the iteration order to make the best use of the memory
hierarchy, such as with a polyhedral analysis. In GCC, for example, we find that a nested loop structure such as the
following can be five times more efficient:

for (p[0] = interior.lwb[0]; p[0] < interior.upb[0]; p[0]++) {
for (p[1] = interior.lwb[1]; p[1] < interior.upb[1]; p[1]++) {
for (p[2] = interior.lwb[2]; p[2] < interior.upb[2]; p[2]++) {
gridB[p] =
gridA[p + pt(0, 0, 1)] +
gridA[p + pt(0, 0, -1)] +
gridA[p + pt(0, 1, 0)] +
gridA[p + pt(0, -1, 0)] +
gridA[p + pt(1, 0, 0)] +
gridA[p + pt(-1, 0, 0)] +
WEIGHT * gridA[p];

}
}

}

This code is less simple, and it introduces a further dependency on the dimensionality of the grid, preventing us from
generalizing it to an arbitrary number of dimensions.

29.4. Stencil 281

https://en.wikipedia.org/wiki/Polytope_model

Programming Language Principles and Paradigms, Release 0.4

29.5 Nested Iteration

In order to solve the problem of linearized iteration, we can use metaprogramming to turn what appears to be a single
loop into a nested one, making it more amenable to analysis and optimization. We start by writing a recursive template
that introduces a loop nest at each level of the recursion:

template <int N>
struct rdloop {
// Performs a nested loop over the set of loop indices in [lwb,
// upb). The size of lwb and upb must be at least N. For each
// index i1, ..., iN in [lwb, upb), calls func on the point
// pt(is..., i1, ..., iN).
template <class Func, class... Indices>
static void loop(const Func &func, const int *lwb,

const int *upb, Indices... is) {
for (int i = *lwb; i < *upb; i++) {
rdloop<N-1>::loop(func, lwb+1, upb+1, is..., i);

}
}

};

We write our template as a class, since we will require a base case and would need partial function-template special-
ization, which is not supported by C++, to implement it purely with function templates. The class is parameterized by
the dimensionality. Within the class is a single static member function template that is parameterized by a functor type
and a variadic set of indices. The arguments to the function itself are a functor object, which will be applied in the
innermost loop, lower and upper bounds for the remaining dimensions, and the set of indices computed so far.

The body introduces a new loop nest, using the lower and upper bounds, and recursively applies the template with one
less dimension. The bound pointers are adjusted for the new dimension, and we pass the input indices along with the
one for this dimension in the recursive call. Our base case, where there is only a single dimension, is then as follows:

template <>
struct rdloop<1> {
template <class Func, class... Indices>
static void loop(const Func &func, const int *lwb,

const int *upb, Indices... is) {
for (int i = *lwb; i < *upb; i++) {
func(pt(is..., i));

}
}

};

We construct a point from the collected set of indices from each dimension and then call the functor object on that
point.

Now that we have a mechanism for constructing a set of nested loops, we start the recursion from a function object and
domain as follows:

rdloop<N>::loop(func, domain.lwb.coords,
domain.upb.coords);

In order to actually make use of this, we provide a loop abstraction as follows:

29.5. Nested Iteration 282

Programming Language Principles and Paradigms, Release 0.4

foreach (p, interior) {
gridB[p] =
gridA[p + pt(0, 0, 1)] +
gridA[p + pt(0, 0, -1)] +
gridA[p + pt(0, 1, 0)] +
gridA[p + pt(0, -1, 0)] +
gridA[p + pt(1, 0, 0)] +
gridA[p + pt(-1, 0, 0)] +
WEIGHT * gridA[p];

};

We have the foreach keyword, which we will define shortly, that takes in a variable name to represent a point and the
domain over which to iterate. We then have a loop body that uses the point variable. A semicolon appears after the
body, and it is necessary due to how foreach is defined.

The loop body looks very much like the body of a lambda function, and since we require a function object in order to
build the nested structure, it is natural to consider how we can arrange for the loop body to turn into a lambda function.
We need a statement in which a lambda function can appear at the end, right before the terminating semicolon, and
assignment fits this structure:

<var> = [<capture>](<parameters>) {
<body>

};

Thus, we need to arrange for the foreach header to turn into the beginning of this statement:

<var> = [<capture>](<parameters>)

We would like the programmer to be able to use all local variables, so we should capture all variables by reference.
The foreach also introduces a new variable for the point, so that should be in the parameter list:

<var> = [&](const point<N> &<name>)

There are several remaining things we need. First, we need to figure out the dimensionality of the point to use as the
parameter. We can use decltype to do so from the domain:

<var> = [&](const decltype(<domain>.lwb) &<name>)

Second, we need a way to ensure that when this assignment happens, the nested loop structure is executed. We can
do so by overloading the assignment operator of the object <var>. Finally, we also need to introduce the left-hand
variable, preferably in its own scope. We can do both by introducing a dummy loop header:

#define foreach(p, dom) \
for (auto _iter = (dom).iter(); !_iter.done; _iter.done = true) \
_iter = [&](const decltype((dom).lwb) &p)

In order for this to work, we need the iter()method on a domain to give us an object whose assignment operator takes
in a functor. This operator would then call the functor within a nested set of loops. The object also needs a done field in
order to ensure the dummy loop executes exactly one iteration. We can add the following members to the rectdomain
template:

template <int N>
struct rectdomain {
...

(continues on next page)

29.5. Nested Iteration 283

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

struct fast_iter {
const rectdomain &domain; // domain over which to iterate
bool done; // whether or not this loop has run

// Constructs a fast_iter with the given domain.
fast_iter(const rectdomain &dom)
: domain(dom), done(false) {}

// Loops over the associate domain, calling func on each point
// in the domain.
template <class Func>
fast_iter &operator=(const Func &func) {
rdloop<N>::loop(func, domain.lwb.coords,

domain.upb.coords);
return *this;

}
};

// Returns a fast_iter over this domain.
fast_iter iter() const {
return fast_iter(*this);

}
};

The assignment operator of fast_iter is a template, taking in a functor object. It then uses our nested loop generation
mechanism to generate a set of nested loops and call the functor from the innermost loop, with the appropriate point as
the argument.

The result is a loop that has the simplicity of a range-based for loop but, depending on the compiler, the performance of
a nested set of loops. As an example, with GCC 6.2 on the author’s iMac computer, the range-based for loop takes 1.45
seconds to perform ten timesteps of the stencil above on a 2563 grid, while the nested loops and the foreach loop each
take 0.28 seconds. This demonstrates the power of metaprogramming in order to extend the features of a language.

29.5. Nested Iteration 284

Part VII

Concurrent Programming

285

Programming Language Principles and Paradigms, Release 0.4

We now take a brief look at concurrent programming, where a program is structured so that several computations can
execute concurrently during overlapping time periods. We focus on aspects of concurrency that are explicitly specified
by a programmer, rather than the implicit concurrency provided by compiler optimizations or the underlying system
hardware.

286

CHAPTER

THIRTY

PARALLEL COMPUTING

From the 1970s through the mid-2000s, the speed of individual processor cores grew at an exponential rate. Much of
this increase in speed was accomplished by increasing the clock frequency, the rate at which a processor performs basic
operations. In the mid-2000s, however, this exponential increase came to an abrupt end, due to power and thermal
constraints, and the speed of individual processor cores has increased much more slowly since then. Figure 30.1 is
graph from Stanford’s CPU database that illustrates this trend:

CPU DB v1.2.11-91-g08f4748

Stanford VLSI Group

Clock Frequency

AMD

Cypress

DEC

Fujitsu

Hitachi

HP

IBM

Intel

Motorola

MIPS

SGI

Sun

Cyrix

HAL

NexGen

1/2

1970 1980 1990 2000 2010 2020

0

1

10

100

1000

10000

Year

C
lo
c
k
 F
re
q
u
e
n
c
y
 (
M
H
z
)

CPU DB v1.2.11-91-g08f4748

Stanford VLSI Group

Clock Frequency

Ross
Zilog
Centaur

2/2
1970 1980 1990 2000 2010 2020
0

1

10

100

1000

10000

Year

C
lo
c
k
 F
re
q
u
e
n
c
y
 (
M
H
z
)

Figure 30.1: Historical data of CPU clock frequencies.

Instead of increasing clock frequency, CPU manufacturers began to place multiple cores in a single processor, enabling
more operations to be performed concurrently.

Parallelism is not a new concept. Large-scale parallel machines have been used for decades, primarily for scientific
computing and data analysis. Even in personal computers with a single processor core, operating systems and inter-
preters have provided the abstraction of concurrency. This is done through context switching, or rapidly switching
between different tasks without waiting for them to complete. Thus, multiple programs can run on the same machine
concurrently, even if it only has a single processing core.

287

http://cpudb.stanford.edu/visualize/clock_frequency

Programming Language Principles and Paradigms, Release 0.4

Given the current trend of increasing the number of processor cores, individual applications must now take advantage
of parallelism in order to run faster. Within a single program, computation must be arranged so that as much work can
be done in parallel as possible. However, parallelism introduces new challenges in writing correct code, particularly in
the presence of shared, mutable state.

For problems that can be solved efficiently in the functional model, with no shared mutable state, parallelism poses few
problems. Pure functions provide referential transparency, meaning that expressions can be replaced with their values,
and vice versa, without affecting the behavior of a program. This enables expressions that do not depend on each other
to be evaluated in parallel. The MapReduce framework is one system that allows functional programs to be specified
and run in parallel with minimal programmer effort. Several functional languages, including NESL and Clojure, have
been designed with parallelism at their core.

Unfortunately, not all problems can be solved efficiently using functional programming. The Berkeley View project
has identified thirteen common computational patterns in science and engineering, only one of which is MapReduce.
The remaining patterns require shared state.

In the remainder of this section, we will see how mutable shared state can introduce bugs into parallel programs and
a number of approaches to prevent such bugs. We will examine these techniques in the context of two applications, a
web crawler and a particle simulator.

30.1 Parallelism in Python

Before we dive deeper into the details of parallelism, let us first explore Python’s support for parallel computation.
Python provides two means of parallel execution: threading and multiprocessing.

30.1.1 Threading

In threading, multiple “threads” of execution exist within a single interpreter. Each thread executes code independently
from the others, though they share the same data. However, the CPython interpreter, the main implementation of Python,
only interprets code in one thread at a time, switching between them in order to provide the illusion of parallelism. On
the other hand, operations external to the interpreter, such as writing to a file or accessing the network, may run in
parallel.

The threadingmodule contains classes that enable threads to be created and synchronized. The following is a simple
example of a multithreaded program:

import threading

def thread_hello():
other = threading.Thread(target=thread_say_hello, args=())
other.start()
thread_say_hello()

def thread_say_hello():
print('hello from', threading.current_thread().name)

>>> thread_hello()
hello from Thread-1
hello from MainThread

The Thread constructor creates a new thread. It requires a target function that the new thread should run, as well as the
arguments to that function. Calling start on a Thread object marks it ready to run. The current_thread function
returns the Thread object associated with the current thread of execution.

30.1. Parallelism in Python 288

http://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/NESL
http://en.wikipedia.org/wiki/Clojure
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://composingprograms.com/examples/parallel/crawler.py.html
http://composingprograms.com/examples/parallel/particle.py.html

Programming Language Principles and Paradigms, Release 0.4

In this example, the prints can happen in any order, since we haven’t synchronized them in any way. The output can
even be interleaved on some systems.

30.1.2 Multiprocessing

Python also supports multiprocessing, which allows a program to spawn multiple interpreters, or processes, each of
which can run code independently. These processes do not generally share data, so any shared state must be communi-
cated between processes. On the other hand, processes execute in parallel according to the level of parallelism provided
by the underlying operating system and hardware. Thus, if the CPU has multiple processor cores, Python processes
can truly run in parallel.

The multiprocessing module contains classes for creating and synchronizing processes. The following is the hello
example using processes:

import multiprocessing

def process_hello():
other = multiprocessing.Process(target=process_say_hello,

args=())
other.start()
process_say_hello()

def process_say_hello():
print('hello from', multiprocessing.current_process().name)

>>> process_hello()
hello from MainProcess
>>> hello from Process-1

As this example demonstrates, many of the classes and functions in multiprocessing are analogous to those in
threading. This example also demonstrates how lack of synchronization affects shared state, as the display can be
considered shared state. Here, the interpreter prompt from the interactive process appears before the print output from
the other process.

30.2 The Problem with Shared State

To further illustrate the problem with shared state, let’s look at a simple example of a counter that is shared between
two threads:

import threading
from time import sleep

counter = [0] # store in a list to avoid global statements

def increment():
count = counter[0]
counter[0] = count + 1

other = threading.Thread(target=increment, args=())
other.start()
increment()
print('count is now: ', counter[0])

30.2. The Problem with Shared State 289

Programming Language Principles and Paradigms, Release 0.4

In this program, two threads attempt to increment the same counter. The CPython interpreter can switch between threads
at almost any time. Only the most basic operations are atomic, meaning that they appear to occur instantly, with no
switch possible during their evaluation or execution. Incrementing a counter requires multiple basic operations: read
the old value, add one to it, and write the new value. The interpreter can switch threads between any of these operations.

In order to show what happens when the interpreter switches threads at the wrong time, we can attempt to force a switch
by sleeping for 0 seconds:

from time import sleep

counter = [0]

def increment():
count = counter[0]
sleep(0) # try to force a switch to the other thread
counter[0] = count + 1

When this code is run, the interpreter often does switch threads at the sleep call. This can result in the following
sequence of operations:

Thread 0 Thread 1
read counter[0]: 0

read counter[0]: 0
calculate 0 + 1: 1
write 1 -> counter[0]

calculate 0 + 1: 1
write 1 -> counter[0]

The end result is that the counter has a value of 1, even though it was incremented twice! Worse, the interpreter may
only switch at the wrong time very rarely, making this difficult to debug. Even with the sleep call, this program
sometimes produces a correct count of 2 and sometimes an incorrect count of 1.

This problem arises only in the presence of shared data that may be mutated by one thread while another thread accesses
it. Such a conflict is called a race condition, and it is an example of a bug that only exists in the parallel world.

In order to avoid race conditions, shared data that may be mutated and accessed by multiple threads must be protected
against concurrent access. For example, if we can ensure that thread 1 only accesses the counter after thread 0 finishes
accessing it, or vice versa, we can guarantee that the right result is computed. We say that shared data is synchronized
if it is protected from concurrent access. In the next few subsections, we will see multiple mechanisms providing
synchronization.

30.3 When No Synchronization is Necessary

In some cases, access to shared data need not be synchronized, if concurrent access cannot result in incorrect behavior.
The simplest example is read-only data. Since such data is never mutated, all threads will always read the same values
regardless when they access the data.

In rare cases, shared data that is mutated may not require synchronization. However, understanding when this is the case
requires a deep knowledge of how the interpreter and underlying software and hardware work. Consider the following
example:

items = []
flag = []

(continues on next page)

30.3. When No Synchronization is Necessary 290

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

def consume():
while not flag:

pass
print('items is', items)

def produce():
for i in range(10):

items.append(i)
flag.append('go')

consumer = threading.Thread(target=consume, args=())
consumer.start()
produce()

Here, the producer thread adds items to items, while the consumer waits until flag is non-empty. When the producer
finishes adding items, it adds an element to flag, allowing the consumer to proceed.

In most Python implementations, this example will work correctly. However, a common optimization in other compilers
and interpreters, and even the hardware itself, is to reorder operations within a single thread that do not depend on each
other for data. In such a system, the statement flag.append('go') may be moved before the loop, since neither
depends on the other for data. In general, you should avoid code like this unless you are certain that the underlying
system won’t reorder the relevant operations.

30.4 Synchronized Data Structures

The simplest means of synchronizing shared data is to use a data structure that provides synchronized operations. The
queuemodule contains a Queue class that provides synchronized first-in, first-out access to data. The putmethod adds
an item to the Queue and the getmethod retrieves an item. The class itself ensures that these methods are synchronized,
so items are not lost no matter how thread operations are interleaved. Here is a producer/consumer example that uses
a Queue:

from queue import Queue

queue = Queue()

def synchronized_consume():
while True:

print('got an item:', queue.get())
queue.task_done()

def synchronized_produce():
for i in range(10):

queue.put(i)
queue.join()

consumer = threading.Thread(target=synchronized_consume, args=())
consumer.daemon = True
consumer.start()
synchronized_produce()

There are a few changes to this code, in addition to the Queue and get and put calls. We have marked the consumer
thread as a daemon, which means that the program will not wait for that thread to complete before exiting. This allows

30.4. Synchronized Data Structures 291

Programming Language Principles and Paradigms, Release 0.4

us to use an infinite loop in the consumer. However, we do need to ensure that the main thread exits, but only after all
items have been consumed from the Queue. The consumer calls the task_done method to inform the Queue that it is
done processing an item, and the main thread calls the join method, which waits until all items have been processed,
ensuring that the program exits only after that is the case.

A more complex example that makes use of a Queue is a parallel web crawler that searches for dead links on a website.

30.5 Locks

When a synchronized version of a particular data structure is not available, we have to provide our own synchronization.
A lock is a basic mechanism to do so. It can be acquired by at most one thread, after which no other thread may acquire
it until it is released by the thread that previously acquired it.

In Python, the threading module contains a Lock class to provide locking. A Lock has acquire and release
methods to acquire and release the lock, and the class guarantees that only one thread at a time can acquire it. All other
threads that attempt to acquire a lock while it is already being held are forced to wait until it is released.

For a lock to protect a particular set of data, all the threads need to be programmed to follow a rule: no thread will access
any of the shared data unless it owns that particular lock. In effect, all the threads need to “wrap” their manipulation
of the shared data in acquire and release calls for that lock.

The following is an example of two threads incrementing a counter that is protected by a lock, avoiding a race condition:

from threading import Thread, Lock

counter = [0]
counter_lock = Lock()

def increment():
counter_lock.acquire()
count = counter[0]
counter[0] = count + 1
counter_lock.release()

other = Thread(target=increment, args=())
other.start()
increment()
other.join()
print('count is now', counter[0])

Acquiring the lock prevents another thread from acquiring it and proceeding to increment the counter. When the lock
has been acquired, the thread can be assured that no other thread can enter the critical section that is protected by the
lock. Once the thread has incremented the counter, it releases the lock so that another thread can access the counter.

In this code, we had to be careful not to return until after we released the lock. In general, we have to ensure that we
release a lock when we no longer need it. This can be very error-prone, particularly in the presence of exceptions, so
Python locks are context managers that can be used with scope-based resource management:

def increment():
with counter_lock:
count = counter[0]
counter[0] = count + 1

The with statement ensures that counter_lock is acquired before its suite is executed and that it is released when the
suite is exited for any reason.

30.5. Locks 292

Programming Language Principles and Paradigms, Release 0.4

Operations that must be synchronized with each other must use the same lock. However, two disjoint sets of operations
that must be synchronized only with operations in the same set should use two different lock objects to avoid over-
synchronization.

30.6 Barriers

Another way to avoid conflicting access to shared data is to divide a program into phases, ensuring that shared data
is mutated in a phase in which no other thread accesses it. A barrier divides a program into phases by requiring all
threads to reach it before any of them can proceed. Code that is executed after a barrier cannot be concurrent with code
executed before the barrier.

In Python, the threading module provides a barrier in the form of the the wait method of a Barrier instance:

counters = [0, 0]
barrier = threading.Barrier(2)

def count(thread_num, steps):
for i in range(steps):

other = counters[1 - thread_num]
barrier.wait() # wait for reads to complete
counters[thread_num] = other + 1
barrier.wait() # wait for writes to complete

def threaded_count(steps):
other = threading.Thread(target=count, args=(1, steps))
other.start()
count(0, steps)
print('counters:', counters)

threaded_count(10)

In this example, reading and writing to shared data take place in different phases, separated by barriers. The writes
occur in the same phase, but they are disjoint; this disjointness is necessary to avoid concurrent writes to the same data
in the same phase. Since this code is properly synchronized, both counters will always be 10 at the end.

30.7 Message Passing

A final mechanism to avoid improper mutation of shared data is to entirely avoid concurrent access to the same data. In
Python, using multiprocessing rather than threading naturally results in this, since processes run in separate interpreters
with their own data. Any state required by multiple processes can be communicated by passing messages between
processes.

The Pipe function in the multiprocessingmodule constructs a communication channel between processes, returning
a pair of connection endpoints. By default, the connection is duplex, meaning a two-way channel, though passing in
the argument False results in a one-way channel. The sendmethod on a connection sends an object over the channel,
while the recvmethod receives an object. The latter is blocking, meaning that a process that calls recv will wait until
an object is received.

The following is a producer/consumer example using processes and pipes:

def process_consume(in_pipe):
while True:

(continues on next page)

30.6. Barriers 293

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

item = in_pipe.recv()
if item is None:

return
print('got an item:', item)

def process_produce(out_pipe):
for i in range(10):

out_pipe.send(i)
out_pipe.send(None) # done signal

pipe = multiprocessing.Pipe(False)
consumer = multiprocessing.Process(target=process_consume,

args=(pipe[0],))
consumer.start()
process_produce(pipe[1])

The two ends of the pipe are obtained by indexing into the result of Pipe(). Since the pipe is created as a one-way
channel, the sender must use the end at index 1 and the receiver the end at index 2.

In this example, we use a None message to signal the end of communication. We also passed in one end of the pipe as
an argument to the target function when creating the consumer process. This is necessary, since state must be explicitly
shared between processes.

The multiprocessing module provides other synchronization mechanisms for processes, including synchronized
queues, locks, and as of Python 3.3, barriers. For example, a lock or a barrier can be used to synchronize printing to
the screen, avoiding the improper display output we saw previously.

30.8 Application Examples

We now examine two application examples in more detail, exploring how the techniques above can be used to properly
synchronize access to shared resources.

30.8.1 Web Crawler

A web crawler is a program that systematically browses the Internet. Such a program may have several uses; one
example is a crawler that validates links on a website, recursively checking that all links hosted by the site are to valid
webpages. This crawler could be implemented with a work queue of URLs that need to be recursively checked and a
set of URLs that have already been encountered by the program. Then for each URL in the work queue, the program
would:

1. Load the webpage, parsing it for outgoing links.

2. For each link on the page:

a) Check if the link has already been seen.

b) If the link has not been seen, then add it to both the seen set and the work queue.

Since Python threading enables network requests to be serviced concurrently, this program can be parallelized by using
several threads to process different URLs. However, the shared queue and set data structures must be protected from
concurrent access.

30.8. Application Examples 294

http://composingprograms.com/examples/parallel/crawler.py.html

Programming Language Principles and Paradigms, Release 0.4

The work queue can be represented using the synchronized Queue class, since it ensures that no more than one thread
can perform an operation on the Queue at a time. However, Python does not provide a synchronized set, so we must
use a lock to protect access to a normal set:

seen = set()
seen_lock = threading.Lock()

def already_seen(item):
with seen_lock:

if item not in seen:
seen.add(item)
return False

return True

A lock is necessary here, in order to prevent another thread from adding the URL to the set between this thread checking
if it is in the set and adding it to the set. Furthermore, adding to a set is not atomic, so concurrent attempts to add to
a set may corrupt its internal data. The already_seen() function adds the given item to the set if it is not already in
there, returning whether or not the item was added.

The following then checks if a URL has been seen and adds it to the work queue if not:

work_queue = Queue()

def queue_url(url):
if not already_seen(url):

work_queue.put(url)

The call to already_seen() ensures that a given URL has not been seen when it is added to the work queue, so that
the URL is only processed once.

30.8.2 Particle Simulator

A particle simulator simulates the interactions between independent particles within a confined space. Each particle
interacts with every other particle; for example, molecules may apply a repulsive force to other molecules based on the
distance between them, resulting from the electric field of the electrons in each molecule. This interaction can be can
be computed over the course of many discrete timesteps. A particle has a position, velocity, and acceleration, and a
new acceleration is computed in each timestep based on the positions of the other particles. The velocity of the particle
must be updated accordingly, and its position according to its velocity.

A natural way to parallelize a particle simulator is to divide the particles among several threads or processes, as illus-
trated in Figure 30.2.

Each thread or process is then responsible for computing the forces on its own particles, updating their positions and
velocities accordingly. The algorithm for a single timestep on each thread can then be divided into the following phases:

1. Read the current position of every particle.

2. For each of its own particles, compute the force resulting from interactions with every other particle, using their
current positions.

3. Update the velocities of its particles based on the forces computed.

4. Update the positions of its particles based on the new velocities.

In this algorithm, the positions of the particles constitute shared data and must be protected from concurrent access.
The multithreaded implementation of the simulator uses barriers to separate phases 1 and 4, which access the shared
data. Two barriers are required, one to ensure that all threads move together between phase 1 and 4 within a timestep,

30.8. Application Examples 295

http://composingprograms.com/examples/parallel/particle.py.html
http://composingprograms.com/examples/parallel/particle.py.html

Programming Language Principles and Paradigms, Release 0.4

Figure 30.2: A particle interaction can be parallelized by splitting the particles among the computational units.

and another to ensure that they synchronously move between phase 4 in a timestep to phase 1 in the next timestep. The
writes in phases 2 and 3 are to separate data on each thread, so they need not be synchronized.

An alternative algorithm is to use message passing to send copies of particle positions to other threads or processes.
This is the strategy implemented by the multiprocess version of the particle simulator, with pipes used to communicate
particle positions between processes in each timestep. A circular pipeline is set up between processes in order to
minimize communication. Each process injects its own particles’ positions into its pipeline stage, which eventually go
through a full rotation of the pipeline, as shown in Figure 30.3.

At each step of the rotation, a process applies forces from the positions that are currently in its own pipeline stage on
to its own particles, so that after a full rotation, all forces have been applied to its particles.

30.9 Synchronization Pitfalls

While synchronization methods are effective for protecting shared state, they can also be used incorrectly, failing to
accomplish the proper synchronization, over-synchronizing, or causing the program to hang as a result of deadlock.

30.9.1 Under-synchronization

A common pitfall in parallel computing is to neglect to properly synchronize shared accesses. In the set example for
the web crawler, we need to synchronize the membership check and insertion together, so that another thread cannot
perform an insertion in between these two operations. Failing to synchronize the two operations together is erroneous,
even if they are separately synchronized:

def already_seen(item):
with seen_lock:

present = item in seen
if not present

with seen_lock:
(continues on next page)

30.9. Synchronization Pitfalls 296

http://composingprograms.com/examples/parallel/particle.py.html

Programming Language Principles and Paradigms, Release 0.4

Figure 30.3: Copies of each particle can be rotated among the processes. A process computes the interaction between
its own particles and the copies it sees in each step of the rotation.

30.9. Synchronization Pitfalls 297

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

seen.add(item)
return not present

Here, it is possible for one thread to acquire seen_lock and see that the item is not in the set. But between releasing
the lock and requiring it for insertion, another thread can obtain the lock and also see that the item is not in the set. This
results in both threads thinking that they inserted the item, potentially resulting in duplicate work.

30.9.2 Over-synchronization

Another common error is to over-synchronize a program, so that non-conflicting operations cannot occur concurrently.
As a trivial example, we can avoid all conflicting access to shared data by acquiring a master lock when a thread starts
and only releasing it when a thread completes. This serializes our entire code, so that nothing runs in parallel. In some
cases, this can even cause our program to hang indefinitely. For example, consider a consumer/producer program in
which the consumer obtains the lock and never releases it:

items = []
lock = Lock()

def consume():
with lock:

while not items:
sleep(1) # wait for a bit

print('got an item:', items.pop())

def synchronized_produce():
with lock:

for i in range(10):
items.append(i)

This prevents the producer from producing any items, which in turn prevents the consumer from doing anything since
it has nothing to consume.

While this example is trivial, in practice, programmers often over-synchronize their code to some degree, preventing
their code from taking complete advantage of the available parallelism.

30.9.3 Deadlock

Because they cause threads or processes to wait on each other, synchronization mechanisms are vulnerable to deadlock,
a situation in which two or more threads or processes are stuck, waiting for each other to finish. We have just seen how
neglecting to release a lock can cause a thread to get stuck indefinitely. But even if threads or processes do properly
release locks, programs can still reach deadlock.

The source of deadlock is a circular wait, illustrated in Figure 30.4 with processes. A process cannot continue because
it is waiting for other processes, which are in turn waiting for the first process to complete.

As an example, we will set up a deadlock with two processes. Suppose they share a duplex pipe and attempt to com-
municate with each other as follows:

def deadlock(in_pipe, out_pipe):
item = in_pipe.recv()
print('got an item:', item)
out_pipe.send(item + 1)

(continues on next page)

30.9. Synchronization Pitfalls 298

Programming Language Principles and Paradigms, Release 0.4

Process	1

Process	3

Process	2
waiting for

waiting for waiting for

Figure 30.4: Deadlock arises when a set of threads or processes is each waiting on another thread or process.

(continued from previous page)

def create_deadlock():
pipe = multiprocessing.Pipe()
other = multiprocessing.Process(target=deadlock,

args=(pipe[0], pipe[1]))
other.start()
deadlock(pipe[1], pipe[0])

create_deadlock()

Both processes attempt to receive data first. Recall that the recvmethod blocks until an item is available. Since neither
process has sent anything, both will wait indefinitely for the other to send it data, resulting in deadlock.

Synchronization operations must be properly aligned to avoid deadlock. This may require sending over a pipe before
receiving, acquiring multiple locks in the same order, and ensuring that all threads reach the right barrier at the right
time.

30.10 Conclusion

As we have seen, parallelism presents new challenges in writing correct and efficient code. As the trend of increasing
parallelism at the hardware level will continue for the foreseeable future, parallel computation will become more and
more important in application programming. There is a very active body of research on making parallelism easier
and less error-prone for programmers. Our discussion here serves only as a basic introduction to this crucial area of
computer science.

30.10. Conclusion 299

CHAPTER

THIRTYONE

ASYNCHRONOUS TASKS

In parallelizing a computation, one strategy is to explicitly decompose a program over the set of workers, as we did in
the previous section. Another option is to divide the work according to the natural granularity of an operation and to rely
on the runtime system to schedule the work appropriately. This latter strategy can be accomplished with asynchronous
tasks, where an operation is launched to be computed asynchronously, and its result used at some further point.

In C++11, an asynchronous task can be launched with the async() function template, contained in the <future>
header. The first argument to async() is the function or function object representing a task, and the remaining argu-
ments are the arguments with which to invoke that function. The following is a basic example:

void foo(int x, int y) {
cout << (x + y) << endl;

}

int main() {
async(foo, 3, 4);
async(foo, 5, 6);

}

The code above launches separate tasks to compute foo(3, 4) and foo(5, 6) asynchronously. The print outputs 7
and 11 can appear in any order, since the two tasks aren’t synchronized with respect to each other, and the outputs can
even be interleaved with each other.

The return value of async() is a future object, which is a proxy for the result of the asynchronous task. In particular,
the async() calls above return objects of type future<void>, since the return type of foo() is void. We can wait
on the result of an asynchronous task by calling the wait() method of the corresponding future object, as in the
following:

int main() {
future<void> f1 = async(foo, 3, 4);
f1.wait();
future<void> f2 = async(foo, 5, 6);
f2.wait();

}

Here, we wait for the first task to complete before launching the second. This ensures that the 7 will appear as output
before the 11.

In the case of a function that returns a non-void value, we can also obtain the result by calling the get() method of
the future object, which waits until the result is available and then returns the result. This is particularly useful if we
have some computation that depends on the result of the task, as in the following:

300

Programming Language Principles and Paradigms, Release 0.4

int main() {
future<int> f1 = async([](int x, int y) {

return x + y;
}, 3, 4);

cout << (f1.get() + 5) << endl;
}

This launches a task to asynchronously call a lambda function, waits for the result and adds 5 to it, and prints the sum.

As a more complex example, let’s consider the tree-recursive computation of the Fibonacci sequence. The following is
a sequential function to compute a Fibonacci number:

long long fib(int n) {
if (n <= 1)
return n;

return fib(n - 1) + fib(n - 2);
}

We can observe that the two recursive calls do not depend on each other, so we can compute them asynchronously by
launching a separate task for one of the calls. The following code does so:

long long async_fib(int n) {
if (n <= 1)
return n;

future<long long> res1 = async(async_fib, n - 1);
long long res2 = async_fib(n - 2);
return res2 + res1.get();

}

This code uses async() to compute one recursive call, while the other call is computed in the existing task. We require
the result of the asynchronous task before we can compute the sum and return, so we use get() on its future object
in order to obtain its result.

As an aside, we write the two recursive calls in separate statements to ensure that the asynchronous task is launched
before the recursive call that takes place in the existing task. Consider the following version that makes both calls in
the same statement:

return async(async_fib, n - 1).get() + async_fib(n - 2);

In C++, the order of evaluation of the two operands to + is unspecified, so it would be valid for the compiler to produce
code that sequentially computes the right-hand side before launching the asynchronous task to compute the left-hand
side. This would turn the whole computation into a sequential one. Thus, we need to use statement sequencing to
ensure that the asynchronous task is launched before the sequential recursive call is made.

31.1 Limiting the Number of Tasks

Most implementations of C++ that execute tasks in parallel do so with the use of an internal thread pool, scheduling
the tasks among the available threads in the pool. There is significant overhead to computing a function with a task,
as it needs go through the scheduling system and then be dispatched to a thread. As such, we often need to limit the
granularity of our tasks to be large enough to amortize this overhead, as well as to reduce the number of tasks to limit
the total overhead.

As an example, computing async_fib(15) on the author’s quad-core iMac computer takes about 4000 times longer
than fib(15), using Clang 8, due to the large number of small tasks that are launched. Instead, we need to rewrite

31.1. Limiting the Number of Tasks 301

Programming Language Principles and Paradigms, Release 0.4

async_fib() to do the remaining computation sequentially when a threshold is reached. The following does so, using
the number of tasks launched so far to determine if the threshold has been met:

long long async_fib(int n, int tasks, int max_tasks) {
if (n <= 1)
return n;

if (tasks < max_tasks) {
future<long long> res1 = async(async_fib, n - 1, 2 * tasks,

max_tasks);
long long res2 = async_fib(n - 2, 2 * tasks, max_tasks);
return res2 + res1.get();

} else {
return fib(n - 1) + fib(n - 2);

}
}

The function takes in two extra arguments, representing the current number of tasks and the threshold value for the
maximum number of tasks. If the threshold has not been reached, then the recursion proceeds as before, launching a
new asynchronous task for one of the calls. In making the recursive calls, we double the number of current tasks to
account for the fact that each step of the recursion doubles the number of concurrent computations. On the other hand,
if the threshold has been reached, then we do the rest of the computation sequentially by calling fib(). Figure 31.1 is
the task graph for computing async_fib(5, 1, 4), limiting the number of tasks to four.

F(4)

F(3) F(2)

F(2) F(1) F(1)

F(1) F(0)

F(0)

F(3)

F(2) F(1)

F(1) F(0)

F(5)

Task 0

Task 1 Task 2

Task 3

Figure 31.1: Task graph for computing async_fib(5, 1, 4).

With the ability to limit the number of tasks, we find that fib(42) takes 1.63 seconds on the author’s quad-core iMac,
whereas async_fib(42, 1, 512) takes 0.47 seconds, about a 3.5x speedup. The 512-task limit was determined
experimentally to be close to the optimal value.

As another example, let’s write quicksort using asynchronous tasks. First, we write the sequential version as follows:

size_t partition(int *A, size_t size) {
int pivot = A[0];

(continues on next page)

31.1. Limiting the Number of Tasks 302

Programming Language Principles and Paradigms, Release 0.4

(continued from previous page)

size_t start = 1;
size_t end = size - 1;
while (start <= end) {
if (A[start] >= pivot)
std::swap(A[start], A[end--]);

else {
std::swap(A[start - 1], A[start]);
start++;

}
}
return start - 1;

}

void quicksort(int *A, size_t size) {
if (size <= CUTOFF) {
std::sort(A, A + size);
return;

}
std::swap(A[0], A[size/2]);
size_t pivot_index = partition(A, size);
quicksort(A, pivot_index);
quicksort(A + pivot_index + 1, size - pivot_index - 1);

}

This implements an in-place quicksort, partitioning the input array by swapping elements to the appropriate side of the
pivot. We cut off the quicksort itself once we reach a small number of elements, since at that point other sorts such as
insertion sort are more efficient. For simplicity, we use std::sort() when we reach the cutoff point, which will be
10 elements in our examples.

As with the Fibonacci sequence, we can launch a separate task to compute one of the recursive calls, limiting ourselves
to a maximum number of tasks:

void async_quicksort(int *A, size_t size, int thread_count,
int max_tasks) {

if (size <= CUTOFF) {
std::sort(A, A + size);
return;

}
std::swap(A[0], A[size/2]);
size_t pivot_index = partition(A, size);
if (thread_count < max_tasks) {
future<void> rec1 = async(async_quicksort, A, pivot_index,

2 * thread_count, max_tasks);
async_quicksort(A + pivot_index + 1, size - pivot_index - 1,

2 * thread_count, max_tasks);
rec1.wait();

} else {
quicksort(A, pivot_index);
quicksort(A + pivot_index + 1, size - pivot_index - 1);

}
}

In order to ensure that the asynchronous recursive call completes before returning, we call wait() on its associated

31.1. Limiting the Number of Tasks 303

Programming Language Principles and Paradigms, Release 0.4

future object. Sorting ten million elements with sequential quicksort() takes 0.93 seconds on the author’s iMac,
while sorting with async_quicksort() takes 0.35 seconds with the task limit at 128.

31.2 Launch Policy

By default, launching an asynchronous task does not require it to be immediately run in another thread. Rather, it
merely allows the task to be run concurrently. Equally valid semantically is to defer execution of the task until the
wait() or get() method is called on the associated future object, obtaining lazy evaluation of the task.

We can explicitly specify whether the task should be run in a different thread or deferred until its completion is required.
We do so by specifying std::launch::async or std::launch::deferred as the first argument to async(), before
the function to be run:

async(std::launch::async, async_fib, n - 1, 2 * tasks, max_tasks)

Without the policy specifier, the implementation is free to follow either launch policy.

We can use the std::launch::async policy to partition work over a fixed set of computational resources, as in
multithreading. As an example, we can estimate the value of 𝑝𝑖 by choosing random points in the range [(0, 0), (1, 1)]
and determining whether the point lies in the upper-right quadrant of the unit circle, as illustrated by the shaded area
in Figure 31.2.

Figure 31.2: The value of 𝑝𝑖 can be estimated by generating random points in [(0, 0), (1, 1)] and counting how many
lie within the upper-right quadrant of the unit circle.

The ratio of samples within the circle to total samples approximates 𝜋
4 , the ratio of the area of a quadrant of the unit

circle to the area of a unit square. The following sequential function implements this algorithm:

double compute_pi(size_t samples) {
default_random_engine generator;
uniform_real_distribution<> dist(0.0, 1.0);
size_t count = 0;
for (size_t i = 0; i < samples; i++) {
double x = dist(generator), y = dist(generator);
if (x * x + y * y <= 1.0)
count++;

}
return 4.0 * count / samples;

}

31.2. Launch Policy 304

Programming Language Principles and Paradigms, Release 0.4

We use the default random-generation engine from the <random> header, along with a uniform distribution of real
numbers between 0.0 and 1.0. Run sequentially for 100 million samples, the computation takes 1.86 seconds on the
author’s iMac computer.

We can parallelize the computation over a fixed set of threads with the following:

double async_compute_pi(size_t samples, size_t num_workers) {
future<double> *results = new future<double>[num_workers];
for (size_t i = 0; i < num_workers; i++) {
results[i] = async(std::launch::async,

compute_pi, samples / num_workers);
}
double total = 0;
for (size_t i = 0; i < num_workers; i++) {
total += results[i].get();

}
delete[] results;
return total / num_workers;

}

Here, we construct a new task for each worker, launching it on a new thread using the async::launch::async policy.
The main thread then waits on each worker thread in turn, accumulating the results from each worker. On the author’s
quad-core iMac, the computation takes 0.95 seconds for 100 million total samples with two worker threads, and 0.52
seconds with four worker threads. The latter is a speedup of about 3.6x over the sequential computation.

31.2. Launch Policy 305

Part VIII

About

306

CHAPTER

THIRTYTWO

ABOUT

This text is based on many resources, including the classic textbook Structure and Interpretation of Computer Programs
(SICP) by Abelson and Sussman, its Python adaptation Composing Programs by DeNero et al (available here), and
Wikipedia. These resources are all licensed for adaptation and reuse under Creative Commons.

This text was originally written for EECS 490, the Programming Languages course at the University of Michigan, by
Amir Kamil in Fall 2016. This is version 0.4 of the text.

This text is licensed under the Creative Commons Attribution-ShareAlike 4.0 International license.

307

http://mitpress.mit.edu/sicp
http://www.composingprograms.com/
https://www.wikipedia.org/
http://eecs490.org
https://web.eecs.umich.edu/~akamil
https://creativecommons.org/licenses/by-sa/4.0/

	I Foundations
	Introduction
	Basic Python
	Variables
	Basic Data Structures
	Compound Statements
	Function Definitions
	Class Definitions
	Modules
	Executing a Module
	Python Reference Semantics

	Basic Elements
	Levels of Description
	Lexical Structure
	Syntax
	Semantics

	Entities, Objects, and Variables
	L-Values and R-Values
	Expressions
	Statements

	Names and Environments
	Blocks
	Name Lookup
	Nested Inline Blocks
	Scope in Functions
	Static Scope
	Dynamic Scope
	Point of Declaration or Definition
	Implementation Strategies

	Control Flow
	Expression Sequencing
	Short Circuiting
	Explicit Sequences
	Compound Assignment

	Statement Sequences
	Unstructured Transfer of Control
	Structured Control
	Conditionals
	Loops
	Loop Termination

	Exceptions
	Avoiding Control Flow
	Lookup Tables
	Other Strategies

	Memory Management
	Storage Duration Classes
	Static Storage
	Automatic Storage
	Thread-Local Storage
	Dynamic Storage

	Value and Reference Semantics
	RAII and Scope-Based Resource Management
	Garbage Collection
	Reference Counting
	Tracing Collectors
	Finalizers

	Grammars
	Regular Expressions
	Context-Free Grammars
	Grammars in Programming Languages
	Vexing Parse

	II Functional Programming
	Introduction to Scheme
	Expressions
	Definitions
	Compound Values
	Symbolic Data

	Functions
	Keyword Arguments
	Default Arguments
	Variadic Functions
	Parameter Passing
	Evaluation of Function Calls

	Recursion
	Activation Records
	Tail Recursion
	Iteration and Recursion

	Higher-Order Functions
	Function Objects
	Functions as Parameters
	Function Pointers
	Binding Policy

	Nested Functions
	Decorators

	Lambda Functions
	Scheme
	Python
	Java
	C++
	Common Patterns
	Sequence Patterns
	Map
	Reduce
	Filter
	Any

	Composition
	Partial Application and Currying

	Continuations
	Restricted Continuations
	Subroutines
	Exceptions
	Generators

	First-Class Continuations
	Signaling Errors
	Call and Return
	Exceptions

	III Theory
	Lambda Calculus
	Non-Terminating Computation
	Normal-Order Evaluation
	Encoding Data
	Booleans
	Pairs
	Church Numerals

	Recursion
	Equivalent Models

	Operational Semantics
	Language
	States and Transitions
	Expressions
	Arithmetic Expressions
	Order of Evaluation
	Boolean Expressions

	Statements
	Examples
	Operational Semantics for Lambda Calculus

	Formal Type Systems
	Variables
	Functions
	Subtyping
	Subtyping and Arithmetic Operators
	The Top Type
	Subtyping and Functions

	Full Typing Rules

	IV Data Abstraction
	Functional Data Abstraction
	Pairs and Lists
	Message Passing
	Lists
	Dictionaries
	Dispatch Dictionaries

	Object-Oriented Programming
	Members
	Access Control
	Kinds of Methods
	Nested and Local Classes
	Implementation Strategies

	Inheritance and Polymorphism
	Types of Inheritance
	Class Hierarchies
	Method Overriding
	Covariance and Contravariance
	Accessing Hidden or Overridden Members

	Implementing Dynamic Binding
	Full Lookup and Dispatch Process

	Multiple Inheritance
	Dictionary-Based Implementation
	Record-Based Implementation

	Static Analysis
	Types
	Type Equivalence
	Type Compatibility
	Type Inference

	Control-Flow Analysis

	Dynamic Typing
	Generics
	Implicit Parametric Polymorphism
	Explicit Parametric Polymorphism
	Non-Type Parameters
	Constraints
	Implementation
	Java Generics
	Curiously Recurring Template Pattern

	Duck Typing

	Modules and Namespaces
	Translation Units
	Modules, Packages, and Namespaces
	Linkage
	Information Hiding
	Initialization

	V Declarative Programming
	Logic Programming
	Prolog
	Lists
	Arithmetic
	Side Effects

	Unification and Search
	Search Order and Backtracking

	The Cut Operator
	Negation
	Examples

	Constraints and Dependencies
	Constraint Logic Programming
	Search
	Examples

	Make

	Pattern Matching

	VI Metaprogramming
	Macros and Code Generation
	Scheme Macros
	CPP Macros
	Stringification and Concatenation
	The Macro Namespace

	Code Generation

	Template Metaprogramming
	Pairs
	Numerical Computations
	Templates and Function Overloading
	SFINAE
	Ensuring a Substitution Failure
	Variadic Templates
	Alternate Pre-C++14 Implementation

	Example: Multidimensional Arrays
	Points
	Domains
	Arrays
	Stencil
	Nested Iteration

	VII Concurrent Programming
	Parallel Computing
	Parallelism in Python
	Threading
	Multiprocessing

	The Problem with Shared State
	When No Synchronization is Necessary
	Synchronized Data Structures
	Locks
	Barriers
	Message Passing
	Application Examples
	Web Crawler
	Particle Simulator

	Synchronization Pitfalls
	Under-synchronization
	Over-synchronization
	Deadlock

	Conclusion

	Asynchronous Tasks
	Limiting the Number of Tasks
	Launch Policy

	VIII About
	About

