
Project 3: Scheme Metacircular Evaluator

Contents

1 Project 3: Scheme Metacircular Evaluator 2
1.1 Optional checkpoint due Wednesday, Mar 12, 2025 at 8pm ET . 2
1.2 Final deadline Monday, Mar 17, 2025 at 8pm ET . 2
1.3 Reported Time to Complete the Project . 2

2 Optional Checkpoint 3

3 Background 3
3.1 Distribution Code . 4

Interpreter . 4
Test Files . 4

3.2 Command-Line Interface . 5
3.3 Error Detection . 5
3.4 Known Departures from R5RS . 5

4 Phase 1: Dictionaries and Environments 6
4.1 Dictionaries . 6
4.2 Environments . 7

5 Phase 2: Primitives and Evaluation 7
5.1 Primitive Procedures . 7
5.2 Evaluating Symbols . 8
5.3 Evaluating Call Expressions . 9
5.4 Division Procedures . 9
5.5 Tests . 9

6 Phase 3: Special Forms 9
6.1 User-Defined Procedures . 10
6.2 Definitions . 11
6.3 Errors . 12
6.4 Tests . 12

7 Phase 4: Dynamic Scope 12

8 Rules and Regulations 13

9 Grading 14
9.1 Test Grading . 15

Running Your Own Test Cases . 15

10 Submission 16

11 Acknowledgments 16

1

12 Frequently Asked Questions 16

https://eecs390.github.io/project-metacircular-evaluator/

1 Project 3: Scheme Metacircular Evaluator

1.1 Optional checkpoint due Wednesday, Mar 12, 2025 at 8pm ET

1.2 Final deadline Monday, Mar 17, 2025 at 8pm ET

In this project, you will implement an interpreter for a subset of the R5RS Scheme programming language, written in
Scheme itself. The main purpose of this exercise is to gain further experience with functional programming, including
recursion, higher-order functions, functional data abstraction, and message passing. A secondary goal is to achieve a
basic understanding of interpretation, as well as the distinction between static and dynamic scope.

The project is divided into multiple suggested phases. The project will need to be completed in the order of the phases
below.

You may work alone or with a partner. Please see the syllabus for partnership rules. As a reminder, you may not share
any part of your solution outside of your partnership. This includes both code and test cases.

1.3 Reported Time to Complete the Project

The following is the time students reported they spent on the project in Winter 2024.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

<5 5-9 10-14 15-19 20-24 25-30 >30

Fr
ac

tio
n

of
 S

tu
de

nt
s

Hours

Time to Complete Project 3 (Winter 2024)

2

http://www.schemers.org/Documents/Standards/R5RS/

These data are for planning purposes only. We do not consider the exact time spent on the project to be reflective of
anyone’s learning or ability. Rather, completing the project regardless of how much time it takes is what is important
to achieve the learning goals of the project.

2 Optional Checkpoint

The checkpoint consists of achieving at least 30% of the points on the public and private test cases before the checkpoint
deadline, which is achievable by passing all the public test cases for Phases 1 and 2. Your grade for the checkpoint will
be computed as the better of:

• 𝑚𝑖𝑛(0.3, 𝑠𝑐𝑜𝑟𝑒)/0.3, where 𝑠𝑐𝑜𝑟𝑒 is the fraction of autograded points earned by your best submission before
the checkpoint deadline.

• 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒, where 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 is the fraction of autograded points earned by your best submission before the
final deadline.

Thus, completing the checkpoint is optional. However, doing it will work to your benefit, since you can guarantee full
credit on the 25% of the project points dedicated to the checkpoint.

For this project, passing the public test cases for Phases 1 and 2 is enough to guarantee full credit on the checkpoint.

3 Background

An interpreter follows a multistep procedure in processing code. In a program file, code is represented as raw character
data, which isn’t suitable for interpreting directly. The first step then is to read the code and construct a more suitable
internal representation that is more amenable to interpretation. This first step can be further subdivided into a lexing
step, which chops the input data into individual tokens, and parsing, which generates program fragments from tokens.
The end result of this reading process is a structured representation of a code fragment.

Once an input code fragment has been read, the interpreter proceeds to evaluate the expression that the fragment repre-
sents1. This evaluation process happens within the context of an environment that maps names to entities. Evaluation
is recursive: subexpressions are themselves evaluated by the interpreter in order to produce a value.

Upon evaluating a code fragment, an interactive interpreter will proceed to print out a representation of the resulting
value. It will then proceed to read the next code fragment from the input, repeating this process.

This iterative combination of steps is often referred to as a read-eval-print loop, or REPL for short. Interactive inter-
preters often provide a REPL with a prompt to read in a new expression, evaluating it and printing the result.

In this project, we are implementing a specific kind of interpreter called a metacircular evaluator. This is an interpreter
in which the host language (the language in which the interpreter is implemented) is the same as the client language
(the language that is being interpreted)2. The advantage of using the same language for writing the interpreter is that
we can rely on the host interpreter to do most of the work. Thus, a metacircular evaluator is often a useful vehicle for
exploring language extensions or optimizations, and systems such as PyPy use a similar strategy.

Most of the work in this project entails implementing data abstractions for the internals of an interpreter, as well as
functionality involving evaluation, error checking, and special forms. We will rely on the built-in read procedure (or
optionally, the read-datum procedure from the preceding project) for parsing. The result of parsing is Scheme-level
representations of the code (in the form of pairs, numbers, symbols, and so on). Our interpreter performs the evaluation
step on the resulting structured representations. For simplicity, we only support a subset of R5RS Scheme.

1 An interpreter for an imperative language, such as Python, will execute the code fragment if it represents a statement. Scheme, however, only
has expressions, so the interpreter only evaluates code.

2 This is related to the concept of a self-hosting compiler, which is a compiler that compiles its own source code.

3

https://www.pypy.org/
http://www.schemers.org/Documents/Standards/R5RS/

3.1 Distribution Code

Use the following commands to download and unpack the distribution code:

$ wget \
https://eecs390.github.io/project-scheme-metacircular/starter-files.tar.gz

$ tar xzf starter-files.tar.gz

Start by looking over the distribution code, which consists of the following files:

Interpreter

env.scm Implementation of dictionary and environment abstract data types.
error.scm Implements the error procedure for signaling errors.
driver.scm Top-level driver for the metacircular evaluator. Implements the read-eval-print loop.
primitives.
scm

Implements an abstract data type for primitive procedures, as well as error checking for those
procedures.

core.scm Implements the core evaluation procedure, as well as data types for special forms and user-defined
procedures.

The code you write will be in env.scm, primitives.scm, and core.scm. You will not modify driver.scm, unless
you wish to use your Project 2 code for parsing. To do so, place distribution.scm, lexer.scm, and parser.scm
in the project directory, and modify the use-project-parser global variable in driver.scm to be #t.

Test Files

assert.scm Assertion procedures used in internal tests.
test.scm Setup code for internal testing.
env_tests.scm Basic internal tests for dictionaries and environments (Phase 1).
internal_phase2_tests.scm Internal tests of Phase 2 functions.
internal_phase3_tests.scm Internal tests of Phase 3 functions.
phase2_tests.scm Basic external tests for Phase 2.
phase3_all_tests.scm Various external tests for Phase 3.
phase3_begin_tests.scm External tests for the begin special form.
phase3_define_tests.scm External tests for the define special form.
phase3_error_tests.scm External error tests for Phase 3.
phase3_if_tests.scm External tests for the if special form.
phase3_lambda_tests.scm External tests for the lambda special form.
phase3_quote_tests.scm External tests for the quote special form.
phase4_tests.scm Basic external tests for the mu form (Phase 4).

In addition, the starter files include expected output files (*.expect) for the test files for Phases 2-4.

The provided tests can be run with the given Makefile. It contains the following targets:

• all: run all tests for Phases 1-4

• phase1, . . . , phase4: run the tests for an individual phase

• phase3_all, phase3_begin, . . . : run an individual Phase 3 test, e.g. phase3_all_tests.scm,
phase3_begin_tests.scm, and so on

4

The “internal” tests are run through the plt-r5rs interpreter directly, invoking the procedures in env.scm,
primitives.scm, and core.scm directly. The “external” tests are run through the driver for the metacircular evalua-
tor, and they can only use the procedures and forms we support in the evaluator. See the bottom of primitives.scm
and core.scm for what is supported.

3.2 Command-Line Interface

Start the Scheme interpreter with the following command:

$ plt-r5rs driver.scm

This will initialize the interpreter and place you in an interactive loop. You can exit with an EOF (Ctrl-D on Unix-based
systems, Ctrl-Z on some other systems).

You can interpret all the code in a file using input redirection:

$ plt-r5rs driver.scm < phase2_tests.scm

Or:

$ cat phase2_tests.scm | plt-r5rs driver.scm

3.3 Error Detection

Your interpreter should never crash (except on parse errors if you are using the default read). Rather, it should detect
erroneous Scheme code and report an error using the provided error procedure in error.scm. The procedure takes a
string as its first argument, and it optionally takes additional arguments of any type. The arguments are printed, and then
the procedure invokes the continuation of the read-eval-print-loop to read and evaluate a new expression. The
Makefile and autograder strip out the actual content of error messages before comparing output. Thus, the contents
of an error message are up to you. We recommend providing a message that would be useful for a user.

3.4 Known Departures from R5RS

For simplicity, we depart from the Scheme standard in several places. The following is an incomplete list of discrep-
ancies between our implementation and R5RS:

• We allow any ⟨identifier⟩ to be a ⟨variable⟩ (see User-Defined Procedures for more details).

• We allow internal definitions anywhere, not just at the beginning of a body.

• We do not support variadic procedures.

– Primitive procedures are implemented with a fixed number of arguments (e.g. list takes no arguments, +
takes exactly two).

– User-defined variadic procedures are considered undefined behavior, so your implementation can handle
them however you like (including crashing) – they will not be tested.

• There is a large set of standard procedures and forms that we do not implement.

5

http://www.schemers.org/Documents/Standards/R5RS/

4 Phase 1: Dictionaries and Environments

We start by building abstract data types for dictionaries and environments. We will build these abstractions using
higher-order functions, specifically with message passing and dispatch functions. Messages will be represented as
Scheme symbols.

4.1 Dictionaries

R5RS Scheme does not have a built-in dictionary type, so we will construct our own. Implement the dictionary
higher-order procedure in env.scm. The resulting object should support the following messages:

• length, with no additional arguments: returns the number of key-value pairs in the dictionary

• contains, with a key argument: returns whether the key is contained in the dictionary

• get, with a key argument: returns the value associated with the given key. The behavior is undefined if the key
is not in the dictionary.

• insert, with additional key and value arguments: associates the given key with the given value. If the key is
already in the dictionary, this replaces the value associated with the key.

The behavior of a dictionary is undefined if it receives a message that does not match any of the above.

Here are some examples of creating and using a dictionary:

> (define d (dictionary))
> (d 'contains 'x)
#f
> (d 'insert 'x 3)
> (not (d 'contains 'x))
#f
> (d 'get 'x)
3
> (d 'insert 'x 4)
> (d 'get 'x)
4
> (d 'length)
1

Since different messages require different numbers of arguments, you will need to make use of variadic arguments.
Read sections 4.1.4 and 5.2 in the R5RS spec for how to define variadic procedures.

You will need to use mutators to store and modify key-value pairs. You may use the set!, set-car!, and set-cdr!
procedures within your dictionary implementation. Refer to the R5RS spec for details on these procedures.

You may implement your dictionary using any underlying representation. You do not have to use a hashtable or tree-
based representation. You may find the built-in assoc procedure helpful.

Your dictionary abstraction does not need to perform any error checking. (As usual, “undefined behavior” means the
implementation can do anything, including crashing.)

6

https://eecs390.github.io/notes/data.html#message-passing
http://www.schemers.org/Documents/Standards/R5RS/

4.2 Environments

An environment consists of a sequence of frames, each of which binds names to values. A natural representation of
an environment is a linked list of individual frames, where each frame has a reference to its parent frame, and the
top-level (global) frame has a null parent. Fill in the implementation for the higher-order frame procedure using this
representation strategy. The resulting object should support the following messages:

• contains, with a name argument: returns whether the name is bound in the environment, i.e. in the frame or
any of its ancestors

• get, with a name argument: returns the value bound to the given name in the closest frame that contains a binding
for the name. The behavior is undefined if the name is not bound in the environment.

• insert, with additional name and value arguments: binds the given name to the given value in the current frame.
If a binding already exists in the current frame, this replaces that binding.

The behavior of an environment is undefined if it receives a message that does not match any of the above.

Do not repeat code. Use the dictionary abstraction above to maintain the bindings for an individual frame. You can use
the built-in apply procedure to forward variadic arguments. The following is an example of using apply:

> (apply + 1 2 '(3 4))
10

Refer to the R5RS spec for more details on apply.

We use an empty (null) list to represent a null parent. Refer to the documentation of the frame procedure for examples.

Your frame implementation does not need to perform any error checking.

When you are done with this phase, run the provided test with:

$ make phase1

Make sure to write additional tests of your own to cover all of the required behavior for dictionaries and environments.

5 Phase 2: Primitives and Evaluation

In this phase, you will implement basic features of the Scheme interpreter. Once this phase is complete, your interpreter
should be able to evaluate basic Scheme expressions consisting of calls to primitive procedures, as well as compound
expressions composed of these basic elements.

5.1 Primitive Procedures

Implement primitive-procedure in primitives.scm. This is a higher-order function that creates a wrapper object
around a host-level implementation of a primitive procedure. The wrapper should take a message and any number of
arguments. Given the call message, an environment, and any number of argument expressions, the wrapper should:

1. Check whether the given number of argument expressions matches the expected number. Use the provided
arity-error procedure to signal an error. We only support a fixed number of arguments to primitive procedures
in this project.

2. Evaluate the argument expressions in some arbitrary order in the given environment, using scheme-eval from
core.scm.

3. Invoke the underlying host implementation on the resulting argument values.

7

http://www.schemers.org/Documents/Standards/R5RS/

Do not repeat or write unnecessary code. Use the built-in map procedure for performing the map pattern rather than
reimplementing it.

The wrapper should also respond to the to-string message, producing a string of the form:

[primitive procedure <name>]

where <name> is the name passed into primitive-procedure.

The behavior of the wrapper is undefined if it receives a message that does not match any of the above.

The following is an example of using primitive-procedure:

> (load "test.scm")
> (define proc (primitive-procedure 'cons 2 cons))
> (proc 'call (frame '()) 3 4)
(3 . 4)
> (proc 'to-string)
"[primitive procedure cons]"

A few more tests are in internal_phase2_tests.scm.

Refer to add-primitives for which primitive procedures we support in our interpreter.

5.2 Evaluating Symbols

The interpreter code we provide can evaluate primitive values (e.g. numbers and strings), as you can see by examining
scheme-eval in core.scm. This procedure is the evaluator of the intepreter. It takes in a Scheme expression, in the
form produced by the parser, and an environment, evaluates the expression in the given environment, and returns the
result.

You can start the interpreter and type in primitive values, which evaluate to themselves:

$ plt-r5rs driver.scm
scm> 3
3
scm> "hello world"
"hello world"
scm> #t
#t

Modify scheme-eval to support evaluating symbols in the current environment. This will allow you to evaluate
symbols that are bound to primitive functions:

scm> =
[primitive procedure =]

If a symbol is undefined in the environment when it is evaluated, signal an error by invoking the error procedure
defined in error.scm. This will print the provided message and optional additional argument and return the interpreter
back to the REPL, as described in Error Detection. The following is an example of the resulting behavior:

scm> undefined
Error: unknown identifier undefined

You do not need to match this error message, but the error messages you use need to be meaningful – they should
provide enough information for a user to diagnose the problem in their code.

8

5.3 Evaluating Call Expressions

Modify scheme-eval so that it can evaluate a call expression (combination), which is comprised of a list. A list is
evaluated by recursively evaluating the first operand. The result must be a callable object. In this project, all callable
objects are represented by host procedures, so you should use the built-in procedure? predicate to check the result of
evaluating the operand. If the result is a callable, then pass it the call message, the environment, and the remaining
list elements.

If the first operand does not evaluate to a host procedure, your interpreter should signal an error with the error proce-
dure.

You should now be able to evaluate calls to primitive procedures, such as:

scm> (boolean? #t)
#t
scm> (not #t)
#f
scm> (+ 1 (* 2 3))
7

5.4 Division Procedures

As mentioned in Error Detection, our interpreter is responsible for all error checking. This includes type check-
ing for procedures that expect specific types. Take a look at the provided type-checked procedure, which wraps
the implementation of a primitive with an adapter that performs type checking. Refer to add-primitives for how
type-checked is used.

Division procedures not only require their arguments to be of the appropriate type, but they also require the second
argument to be nonzero. Implement the divide-checked procedure, which wraps a division procedure with an adapter
that does both type checking and value checking. Make use of the provided check-arg-types where appropriate.

5.5 Tests

When this phase is complete, you will be able to run the provided tests for the phase:

$ make phase2

Make sure to write your own tests as well, as only a few tests are provided for you.

6 Phase 3: Special Forms

Extend the evaluation procedure in your interpreter to handle special forms. A special form differs from a procedure
in that it expects its arguments unevaluated, operating on the arguments as data instead.

First, complete the special-form wrapper in core.scm. This should be similar to primitive-procedure, but
significantly simpler. Upon receiving the call message, a special-form object should invoke the underlying imple-
mentation with the subsequent arguments. Upon receiving the to-string message, it should produce a string of the
form:

[syntax <name>]

9

where <name> is the name passed into special-form.

The behavior of the wrapper is undefined if it receives a message that does not match any of the above.

Next, proceed to actually implement the required functionality for the following forms. Fill in the scheme-* procedures
(e.g. scheme-begin) to perform the correct actions for each individual form. Refer to the R5RS spec for full details
about each form, including what constitutes an error.

• Implement the begin form. This should just evaluate each of its arguments in order, and the result of the begin
should be the result of the last argument expression.

The R5RS spec allows begin to have zero arguments in some contexts, while it requires it to have at least one
argument in others (see sections 7.1.3 and 7.1.6 in the spec for details). However, for this project, you should
enforce that begin have at least one argument in all contexts.

• Implement the if form. If the test yields a false value and there is no alternate, the result is unspecified. You do
not need to do anything special for this case. (In other words, rely on the unspecified value produced by the host
interpreter’s implementation of if or other forms.)

• Implement the quote form, which simply returns its argument unevaluated.

6.1 User-Defined Procedures

A user-defined procedure can be introduced with the lambda special form. Start by implementing lambda-procedure,
which returns an object representing a user-defined lambda procedure. This object keeps track of the formal parameters,
body, and definition environment of a user-defined procedure – lambda procedures are statically scoped, so we need
access to the definition environment when the procedure is actually called.

The object returned by lambda-procedure should accept the call message, accompanied by an environment argu-
ment and the arguments to the procedure call. Given the call message, it should:

1. Check whether the given number of arguments matches the expected number. Keep in mind that internally, the
procedure object also receives the environment as its first argument, in addition to the arguments provided by the
user.

2. Evaluate the arguments in some arbitrary order in the given (dynamic) environment.

3. Extend the definition environment with a new frame.

4. Bind the formal parameters to the argument values in the new frame.

5. Evaluate the body in the new frame.

Given the to-string message, it should produce a string of the form:

[lambda procedure <name>]

where <name> is the name passed into lambda-procedure.

The behavior of the object returned by lambda-procedure is undefined if it receives a message that does not match
any of the above.

We recommend testing your implementation before moving forward. You can do so by starting plt-r5rs (or Dr-
Racket), loading test.scm using the load procedure, and then invoking procedures in core.scm or primitives.
scm manually. The following is an example:

> (load "test.scm")
> (define p1 (lambda-procedure 'test '(x y) '((+ x y)) global-env))
> (p1 'call global-env 3 4)
7

(continues on next page)

10

http://www.schemers.org/Documents/Standards/R5RS/

(continued from previous page)

> (p1 'call global-env 3)
Error: incorrect number of arguments to test: expected 2, got 1
(#<void>)
> (p1 'to-string)
"[lambda procedure test]"

You can also run the test cases in internal_phase3_tests.scm:

$ plt-r5rs internal_phase3_tests.scm

Note that this file has test code for the other special forms as well, so you may not yet pass all the test cases.

Once you are satisfied that lambda-procedureworks correctly, proceed to actually implement scheme-lambda. You
only have to support lambdas that take a fixed number of arguments (the first form mentioned in Section 4.1.4 of the
Scheme spec).

Evaluating the lambda expression itself requires the following:

• Check the format of the expression to make sure it is free of errors. Refer to the R5RS spec for the required
format and what constitutes an error.

For the purposes of this project (for both lambda and define), use the following rule for ⟨variable⟩ rather than
what is in section 7.1.1 of the R5RS spec:

⟨variable⟩ −→ ⟨identifier⟩

• Use lambda-procedure to create an object representing a user-defined procedure. You can pass it an arbitrary
name, such as '<lambda>.

• The resulting value of the lambda expression is the newly created procedure object.

6.2 Definitions

You are required to implement the first two forms for define listed in Section 5.2 of the R5RS spec.

• The first form binds a variable to the value of an expression. You will need to evaluate the expression in the
current environment and bind the given name to the resulting value in the current frame.

• The second form defines a procedure. You only have to handle a fixed number of parameters, so you need not
consider the case where the formals contain a period. Do not repeat code; make use of what you have already
written for lambda, and refactor if necessary to avoid duplication.

For simplicity, we place fewer restrictions on how define can be used than the R5RS spec:

• You do not have to check that define is at the top level or beginning of a body.

• Do not treat internal definitions (those that are not at the top level) any differently than top-level definitions,
except for the frame in which the binding occurs.

• Allow names corresponding to primitive procedures and special forms to be redefined. (This corresponds to the
behavior of plt-r5rs when given the --no-prim command-line argument.)

For this project, the define form should evaluate to the name that was just defined:

scm> (define x 3)
x
scm> (define (foo x) (+ x 1))
foo

11

http://www.schemers.org/Documents/Standards/R5RS/
http://www.schemers.org/Documents/Standards/R5RS/

6.3 Errors

Your implementation of each special form must check for errors where appropriate and invoke the error procedure
in error.scm if an error occurs. Examples of errors include a variable definition that is provided more than one
expression, a definition with an improper name, a procedure with multiple parameters with the same name, an if with
less than two arguments, and so on. Specific examples of these:

(define x 3 4)
(define 4 5)
(lambda (x y x) 3)
(if #t)

Refer to the Scheme documentation for what constitutes erroneous cases for each special form.

6.4 Tests

When this phase is complete, you will be able to run the provided tests for the phase:

$ make phase3

You can also run an individual test file for this phase, as in the following:

$ make phase3_begin

Make sure to write your own tests as well.

7 Phase 4: Dynamic Scope

To illustrate the value of a metacircular evaluator, we will extend the Scheme language with a mu form that creates
procedures that use dynamic rather than static scope. Recall that dynamic scope with shallow binding means that the
parent environment of the newly created frame for a procedure call is the calling environment, rather than the definition
environment. The following is an example of a mu procedure:

scm> (define y 5)
y
scm> (define foo (mu (x)

(+ x y)
))

foo
scm> (foo 3)
8
scm> ((mu (y)

(foo -3)
)
2
)

-1

Here, we have defined foo to be a mu procedure that refers to a non-local variable y. When invoked from global scope,
the dynamic environment is the global environment, so y evaluates to 5, reflecting its binding in the global frame.
However, when foo is invoked from within another procedure with its own binding for y, then y evaluates to the value
corresponding to that binding.

12

Start by implementing an analogue of lambda-procedure for procedures with dynamic scope. As always, avoid
repeating code, refactoring if necessary. Like a lambda procedure object, a mu procedure must respond to both the
call and to-stringmessages. Given the to-stringmessage, a mu procedure object should produce a string of the
form:

[mu procedure <name>]

where <name> is an arbitrary name of your choosing, such as '<mu>.

Second, implement a scheme-mu procedure that handles evaluation of a mu expression, resulting in a newly created
procedure object.

Finally, modify add-special-forms so that it adds a binding for the mu special form to the given environment.

When this phase is complete, you will be able to run the provided tests for the phase:

$ make phase4

Make sure to write your own tests as well.

8 Rules and Regulations

The goals of this project include obtaining experience in functional programming. As such, your code is subject to the
following constraints:

• You may not use any non-R5RS-standard code.

• You may not use the built-in eval procedure, or similar procedures, except in testing.

• You may not use any procedures or constructs with side effects. Included in the prohibited set are any mutators
(procedures or constructs that end with a bang, e.g. set!), and you may only use define at the top level (i.e. at
global scope). The only exception to this rule is that you may use set!, set-car!, and set-cdr! in env.scm.

• You may not use any iteration constructs (including the “named let” construct described in section 4.2.4 of the
R5RS spec). Use recursion instead.

To facilitate checking the rules above, the following symbols may not appear in env.scm, primitives.scm, or core.
scm:

• read

• eval

• current-input-port

• current-output-port

• open-input-file

• open-output-file

• with-input-from-file

• with-output-to-file

• any symbol ending with !, except set!, set-car!, and set-cdr! in env.scm

• define as the first item in a list, except at global scope

• peek-char

• read-char

13

• do

• for-each

• syntax-rules

Any violations of the two sets of rules above will result in a score of 0.

In addition, the standard Engineering Honor Code rules apply. Thus, you may not share any artifact you produce for
this project outside of your partnership, including code, test cases, and diagrams. This restriction continues to apply
even after you leave the course. Violations will be reported to the Honor Council.

9 Grading

The grade breakdown for this project is as follows:

• 25% checkpoint

• 70% final deadline autograded

• 5% final deadline hand graded

Hand grading will evaluate your programming practices, such as documentation, avoiding unnecessary repetition, defin-
ing appropriate ADTs, and making proper use of built-in Scheme procedures. We will look for the following specific
pitfalls:

• significant code duplication

• non-descriptive variable, function, or class names

• avoiding the recursive leap of faith, leading to unnecessary cases in recursive functions

• not using map where appropriate (performing an operation over the elements of a list, where order does not
matter)

• using map where its lack of ordering guarantees can lead to incorrect, implementation-dependent behavior

• overly lengthy or nested code, where helper functions should be used instead

• unnecessary use of let (e.g. (let ((variable expression)) variable) instead of just expression, or
using nested lets where a let* could be used instead)

• unnecessary conditional or boolean logic (e.g. comparing to #t or #f, patterns such as “if test then true else
false” instead of using the truth value of “test” directly, and so on), or using nested conditionals where a cond
could be used instead

• uninformative documentation

• uninformative error messages

Use the above as a checklist for making sure that your code meets the coding-practices requirements.

To be eligible for hand grading, your solution must achieve at least half the points on the autograded, final-deadline
portion of the project.

14

9.1 Test Grading

We will autograde your “external” Scheme tests for Phase 2 through Phase 4, which should be similar in structure to the
provided phase*.scm test files. The Scheme code in these tests run through the metacircular evaluator, via plt-r5rs
driver.scm. See the bottom of primitives.scm and core.scm for which Scheme procedures and special forms
are available in the evaluator.

Your test files must use the following naming pattern:

• test-*.scm

This pattern does not match any of the public test files – the buggy instructor solutions have been carefully crafted to
pass all the public phase*.scm tests, so you will need to write your own tests that provide coverage distinct from the
public tests.

You can submit up to 30 files matching the pattern above.

To grade your Scheme tests, we use a set of intentionally buggy instructor solutions (or mutants).

1. We run your Scheme tests with a correct solution, generating corresponding .expect files:

$ plt-r5rs driver.scm < test-file.scm > test-file.expect

• Tests that do not crash are valid.

• Tests that crash (generally due to syntax errors) or time out (e.g. due to an infinite loop) are invalid.

2. We run all of your valid tests against each buggy solution, using the .expect files generated by the correct
solution:

$ plt-r5rs buggy-driver.scm < test-file.scm > test-file.out
$ diff test-file.out test-file.expect

• If any of your valid tests fail on the buggy solution, they have caught the bug.

• The autograder assigns points for each bug that is caught.

You may include any number of erroneous or correct fragments of code in a single test-*.scm file. However, keep
the following in mind:

• If the interpreter encounters an error when evaluating an expression, it discards the entire expression after gen-
erating the error message. Therefore, do not include multiple errors in a single expression.

Running Your Own Test Cases

The Makefile will automatically run your test-*.scm test cases through driver.scm. However, it won’t be able to
compare against the expected results until you generate .expect files. You can do so using the following command:

$ plt-r5rs driver.scm < test-file.scm | sed "s/Error:.*$/Error:/g" > test-file.expect

The sed command here removes the content of error messages, and it is what the Makefile does before using diff
to compare the actual output with the expected output.

Make sure to manually check the contents of the resulting file to ensure it contains what you expect.

15

https://en.wikipedia.org/wiki/Mutation_testing

10 Submission

All code that you write for dictionaries and environments must be placed in env.scm. The remaining code you write
for the interpreter must be placed in primitives.scm or core.scm. You may not change any part of the interface
that is used by driver.scm.

Submit core.scm, env.scm, primitives.scm, and your own test files to the autograder before the deadline. You
may submit up to 30 files for the pattern test-*.scm (do not submit *.expect files). If you have more test files than
the limit, you will need to choose a subset to submit to the autograder.

11 Acknowledgments

This project uses elements from the Structure and Interpretation of Computer Programs text by Abelson and Sussman,
as well as the Scheme interpreter project in the Composing Programs text by John DeNero.

12 Frequently Asked Questions

• Q: My implementation is printing something out twice, when it’s only supposed to be printed out once.
What could be the problem?

A: The most common cause of this is to evaluate the first item in a list more than once in scheme-eval. Instead,
scheme-eval should bind a variable to the result of evaluating the first element, and then use that where it is
needed.

16

http://mitpress.mit.edu/sicp
http://composingprograms.com

	Project 3: Scheme Metacircular Evaluator
	Optional checkpoint due Wednesday, Mar 12, 2025 at 8pm ET
	Final deadline Monday, Mar 17, 2025 at 8pm ET
	Reported Time to Complete the Project

	Optional Checkpoint
	Background
	Distribution Code
	Interpreter
	Test Files

	Command-Line Interface
	Error Detection
	Known Departures from R5RS

	Phase 1: Dictionaries and Environments
	Dictionaries
	Environments

	Phase 2: Primitives and Evaluation
	Primitive Procedures
	Evaluating Symbols
	Evaluating Call Expressions
	Division Procedures
	Tests

	Phase 3: Special Forms
	User-Defined Procedures
	Definitions
	Errors
	Tests

	Phase 4: Dynamic Scope
	Rules and Regulations
	Grading
	Test Grading
	Running Your Own Test Cases

	Submission
	Acknowledgments
	Frequently Asked Questions

