
Project 2: Scheme Lexer and Parser

Contents

1 Project 2: Scheme Lexer and Parser 2
1.1 Optional checkpoint due Wednesday, Feb 5, 2025 at 8pm ET . 2
1.2 Final deadline Wednesday, Feb 12, 2025 at 8pm ET . 2
1.3 Reported Time to Complete the Project . 3

2 Optional Checkpoint 3

3 Background 4
3.1 Lexer . 5

Lexical Analysis . 5
3.2 Parser . 6

Recursive Descent Parsing . 6
3.3 Scheme I/O Procedures . 8
3.4 Distribution Code . 8

Source Files . 8
Example Files . 9
Test Harnesses . 9
Test Files . 10
Errors . 10
Token Representation . 11

4 Phase 1: Lexing Individual Token Types 11
4.1 Strings . 11
4.2 Booleans . 12
4.3 Characters . 12
4.4 Numbers . 12
4.5 Identifiers . 12
4.6 Punctuators . 13
4.7 Errors . 13
4.8 Testing . 13

5 Phase 2: Full Lexer 13

6 Phase 3: Parser 14
6.1 Simple Expressions . 14
6.2 Compound Expressions . 14
6.3 Errors . 15
6.4 Testing . 15

7 Rules and Regulations 16

8 Grading 17
8.1 Test Grading . 18

Running Your Own Test Cases . 18

1

9 Submission 19

10 Frequently Asked Questions 19

https://eecs390.github.io/project-scheme-parser/

1 Project 2: Scheme Lexer and Parser

1.1 Optional checkpoint due Wednesday, Feb 5, 2025 at 8pm ET

1.2 Final deadline Wednesday, Feb 12, 2025 at 8pm ET

In this project, you will implement a lexer and parser for the R5RS Scheme programming language. The main purpose
of this exercise is to gain experience in functional programming and Scheme. You will also get practice reasoning
about the lexical and syntactic structure of a language.

This project must be written in R5RS-compliant Scheme. The officially supported interpreter for this project is Racket1.
Make sure you choose to run R5RS Scheme. If you use the DrRacket interface, select Language -> Choose Language
-> Other Languages -> R5RS from the menu. You may need to click on Run before the interface will show that R5RS
is chosen.

By default, the Makefile in the distribution code is set up to use the plt-r5rs command-line interpreter included
in the Racket distribution. You may need to add the bin directory under your Racket installation to your path2 so that
the plt-r5rs executable can be located. You may also modify the SCHEME variable in the Makefile to point at the
command-line interpreter you wish to use.

The project is divided into multiple suggested phases. We recommend completing the project in the order of the phases
below.

You may work alone or with a partner. Please see the syllabus for partnership rules. As a reminder, you may not share
any part of your solution outside of your partnership. This includes both code and test cases.

1 On MacOS, you can install Racket with Homebrew (brew install --cask racket).
2 Instructions: Windows; MacOS (e.g. export PATH="/Applications/Racket v7.4/bin:$PATH" for a Racket 7.4 installation on MacOS;

this is unnecessary if you installed Racket with Homebrew)

2

http://schemers.org/Documents/Standards/R5RS/
http://www.schemers.org/Documents/Standards/R5RS/
https://download.racket-lang.org/
http://docs.racket-lang.org/r5rs/running.html
https://www.computerhope.com/issues/ch000549.htm
http://hathaway.cc/post/69201163472/how-to-edit-your-path-environment-variables-on-mac

1.3 Reported Time to Complete the Project

The following is the time students reported they spent on the project in Winter 2024.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

<5 5-9 10-14 15-19 20-24 25-30 >30

Fr
ac

tio
n

of
 S

tu
de

nt
s

Hours

Time to Complete Project 2 (Winter 2024)

These data are for planning purposes only. We do not consider the exact time spent on the project to be reflective of
anyone’s learning or ability. Rather, completing the project regardless of how much time it takes is what is important
to achieve the learning goals of the project.

2 Optional Checkpoint

The checkpoint consists of achieving at least 30% of the points on the public and private test cases before the checkpoint
deadline, which can be achieved by passing all the public tests for Phase 1 (including error checking). Your grade for
the checkpoint will be computed as the better of:

• 𝑚𝑖𝑛(0.3, 𝑠𝑐𝑜𝑟𝑒)/0.3, where 𝑠𝑐𝑜𝑟𝑒 is the fraction of autograded points earned by your best submission before
the checkpoint deadline.

• 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒, where 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 is the fraction of autograded points earned by your best submission before the
final deadline.

Thus, completing the checkpoint is optional. However, doing it will work to your benefit, since you can guarantee full
credit on the 25% of the project points dedicated to the checkpoint.

For this project, passing the public test cases for Phase 1 is enough to guarantee full credit on the checkpoint.

3

3 Background

The input to an interpreter is raw character data from an input stream. For instance, when a user types in (+ 1 3.1)
into an interactive Scheme interpreter, the interpreter receives the raw character sequence:

#\(#\+ #\space #\1 #\space #\3 #\. #\1 #\)

This character sequence is called the external representation of an object (Section 3.3 in the R5RS spec). Before it can
perform any evaluation, the interpreter must first parse the raw character data into a structured internal representation
that is easier to reason about. In Scheme, the read procedure takes the character data from an input stream and
produces a Scheme-level representation: for (+ 1 3.1), the internal representation is a Scheme list whose elements
are the symbol +, the integer 1, and the real number 3.1. The eval procedure can then be used to evaluate the Scheme
representation in a given environment.

External vs. Internal Representation

The external representation of an object is how it is represented as a character sequence in source code,
while the internal representation is its in-memory representation in a compiler, interpreter, or runtime. In
C++, for instance, the source-code representation of the literal 3.14f consists of the five-character ASCII se-
quence '3', '.', '1', '4', 'f'. The runtime representation in most implementations is the binary value
01000000010010001111010111000011, which is the 32-bit IEEE-754 representation of the closest value to 3.14
that can be represented in that format. Observe that the source-code representation consists of decimal digits, a dec-
imal point, and the float specifier f, all encoded in ASCII, while the runtime representation consists of just bits. It is
the lexer and parser that convert between these representations (either directly or indirectly through an intermediate,
compile-time representation).

The external representation of an object is not necessarily unique. For example, the literals 3., 3.0, and 3.00 all
represent the same floating-point value, with a common internal representation. As another example, the sequences
'x and (quote x) are both external representations in Scheme for a list that contains the quote symbol as its first
element and the symbol x as its second element. When printing out a particular object, an implementation chooses
one external representation to use, which may be different than the one that the programmer used.

Finally, the internal representation of an expression is distinct from the value to which it evaluates. In Scheme,
the internal representation for the expression (+ 1 3) consists of a list that contains the + symbol, the number
1, and the number 3. When evaluated, the expression results in the value 4, which is nowhere to be seen in the
internal representation. Another example is the expression x, whose internal representation is just the symbol x.
When evaluated, this expression can result in any number of values depending on what x is bound to in the current
environment, or even in an error if no binding for x exists in the environment.

The job of the lexer and parser is to produce the internal representation of a code fragment. They do not evaluate or
execute the fragment.

The following examples in an interactive interpreter illustrate the read and eval procedures. The input to each read
call is provided immediately after the expression in which read appears:

> (read) (+ 1 3.1) ; input is (+ 1 3.1)
(+ 1 3.1)
> (equal? (read) (list '+ 1 3.1)) (+ 1 3.1)
#t
> (eval (read) (scheme-report-environment 5)) (+ 1 3.1)
4.1

In this project, you will implement the read-datum procedure, which performs the same computation as the built-in
read procedure. In Phase 1 and Phase 2, you will implement a lexer, which translates raw character data into tokens.

4

http://schemers.org/Documents/Standards/R5RS/
https://en.wikipedia.org/wiki/IEEE_754

For example, the input (+ 1 3.1) will result in the following tokens:

(punctuator "(")
(identifier +)
(number 1)
(number 3.1)
(punctuator ")")

You will then implement a parser in Phase 3, which translates tokens into structured Scheme-level representations that
can then be evaluated or manipulated as data.

Start by familiarizing yourself with the lexical structure of Scheme, as defined in Sections 2 and 7.1.1 of the R5RS
spec, and the grammatical structure as defined in Section 7.1.2.

3.1 Lexer

Recall that the lexical structure of a language determines what constitute the tokens of the language, which are akin to
the words in a natural language. The lexical structure can be expressed with regular expressions, though some languages
use the same Backus-Naur form (BNF) to specify both the lexical and grammatical structure. The Scheme R5RS spec
follows the latter strategy, defining the lexical structure in Section 7.1.1 of the spec.

In this project, we will be handling most of the standard R5RS lexical specification. However, we depart from the
specification in the following:

• Our lexer will not distinguish between keywords and other identifiers. Thus, the nonterminals
⟨syntactic keyword⟩, ⟨expression keyword⟩, and ⟨variable⟩ do not appear in our lexical specification. Instead,
all three categories are lexed as ⟨identifier⟩.

• We restrict numbers to base-10 decimal and integer literals. We do not handle other bases, complex numbers, or
fractions. We also restrict the allowed decimal formats. The following replaces the specification for the ⟨number⟩
nonterminal:

⟨number⟩ −→ ⟨integer⟩ | ⟨decimal⟩
⟨integer⟩ −→ ⟨sign⟩ ⟨digit⟩+

⟨decimal⟩ −→ ⟨sign⟩ ⟨digit⟩+ . ⟨digit⟩* | ⟨sign⟩ . ⟨digit⟩+

We will take a narrow interpretation of the rules in the R5RS spec. In particular, the spec states:

Tokens which require implicit termination (identifiers, numbers, characters, and dot) may be terminated
by any ⟨delimiter⟩, but not necessarily by anything else.

We will enforce this rigidly. Thus, inputs such as asdf, (including the comma) and 3a are erroroneous, rather than
being lexed as identifiers as in some Scheme implementations.

Lexical Analysis

Lexical analysis is generally implemented with a finite-state machine (FSM). An FSM consists of a fixed number of
states, and transitions are made between states upon an incremental input, usually individual characters or a character
sequence in the case of a lexer. The start state is the initial state of the machine, and accepting states are those that
indicate that the given input is valid.

An FSM is often illustrated as a directed graph, with a node for each state and accepting states denoted by a doubled
node boundary. Edges correspond to transitions between states and are labeled by the incremental input that triggers
the transition. As an example, Figure 1 is an FSM for lexing strings in Scheme.

A double-quotation marker causes a transition from the start state to the string* state. Any subsequent character
results in the same state, unless it is a backslash or double-quotation marker. The former indicates the start of an escaped

5

http://schemers.org/Documents/Standards/R5RS/
http://schemers.org/Documents/Standards/R5RS/
https://en.wikipedia.org/wiki/Finite-state_machine

������

�����

�������

���

���

���������������������

������

��� ��������

Figure 1: A finite-state machine for lexing a Scheme string.

backslash or double-quotation marker, so it causes a transition to the escape state. A backslash or double-quotation
returns back to the string* state. Any other character results in an error. From the string* state, a double-quotation
mark indicates the end of the string, causing a transition to the string state. This is an accepting state, so the input so
far is accepted as a valid string.

An FSM can be implemented as a functional program, with a function for each state. Upon reading a character or
sequence of characters that trigger a transition, the function for the new state is invoked. The function for an accepting
state merely returns a representation of the accepted token.

For this project, we recommend working out state machines for the Scheme lexical specification. Then use the resulting
FSMs to derive the procedural structure of your lexical analyzer.

3.2 Parser

Once the input has been split up into tokens, the tokens must be parsed in order to produce the data that they represent.
We will be parsing the external representation of Scheme expressions, as described in Sections 3.3 and 7.1.2 of the
R5RS spec. This matches what is produced by the built-in read procedure.

Recursive Descent Parsing

The algorithm our parser uses is recursive descent parsing. In this algorithm, a nonterminal of the grammar is generally
implemented as a function, which recursively calls the functions for the nonterminals that appear on the right-hand side
of the rules for the nonterminal. The specific function to call is determined by the tokens that are read. (Tokens are the
terminals of the grammar.)

As an example, consider the grammar that corresponds to words that have some number of a’s, followed by any number
of c’s, followed by the same number of b’s as a’s. Thus, ab, c, and aacccbb are all accepted by the grammar. The
grammar specification is as follows, with S the start symbol:

𝑆 → 𝑎 𝑆 𝑏 | 𝐶
𝐶 → 𝑐 𝐶 | 𝜀

The following is a recursive descent parser for this grammar, with the characters a, b, and c as terminals, implemented
in Scheme:

6

http://schemers.org/Documents/Standards/R5RS/
https://en.wikipedia.org/wiki/Recursive_descent_parser

; Parses the S nonterminal. Returns a list of two numbers, the first
; the number of a's and b's and the second the number of c's.
(define (parse-S)
(let ((item (peek-char)))
(cond ((char=? item #\a) ; next item is an a

(read-char) ; remove the a from the input stream
(let* ((recurse (parse-S)) ; recursively parse S

(next (read-char))) ; next item should be b
(if (char=? next #\b)

; add 1 to the a count, preserve c count
(cons (+ 1 (car recurse)) (cdr recurse))
(error "expected b")

)
))
(else (list 0 (parse-C))) ; 0 a's + however many c's

)
)

)

; Parses the C terminal. Returns the number of c's.
(define (parse-C)
(let ((item (peek-char)))
(cond ((char=? item #\c) ; next item is a c

(read-char) ; remove the c from the input stream
(+ 1 (parse-C))) ; add 1 to the recursive c count
(else 0) ; no c's

)
)

)

The parse-S procedure parses the S nonterminal. If it encounters an a, then the first rule for S must apply, namely

𝑆 → 𝑎 𝑆 𝑏

Thus, it removes the a from the input, recursively parses an S, and then requires a b to follow, which is also removed
from the input. (We use a let* in the code rather than let since the former guarantees that the initializers run in order,
while the latter does not.) If, on the other hand, something other than an a is encountered, the second rule for S must
apply, and the procedure instead calls parse-C to parse the C nonterminal.

Similarly, if parse-C encounters a c, then the first rule for C applies and it removes the c and recursively calls parse-C.
Otherwise, the second rule applies, which matches C to empty, so that nothing is removed from the input stream.

In the example above, both the parse-S and parse-C functions are recursive, calling themselves. In general, the
functions in a recursive descent parser can also be mutually recursive, as will be the case in the Scheme parser.

7

3.3 Scheme I/O Procedures

In this project, you will be processing data from standard input. You may use the following Scheme procedures in order
to read input and write output:

• read-char: reads a single character from standard input, removing it from the input stream

• peek-char: reads a single character from standard input without removing it from the input stream

• eof-object?: determines if the value read from an input stream is the end-of-file object

• display: writes a string to standard output; does not write a newline

• newline: writes a newline to standard output

You may use any non-mutating standard procedures you like, as long as they are permitted under the Rules and Regu-
lations. The following are some procedures that you may find useful:

• char=?, char<=?, char>=?: compare two characters; do not use eq?, as its behavior on characters is
implementation-dependent

• list->string: converts a list of characters into a string

• string->list: converts a string into a list of characters

• string->number: converts a string representation of a number into its corresponding numerical value

• string->symbol: converts a string into a symbol

Refer to the R5RS spec for the full set of available standard procedures.

You may not use the built-in read procedure, or any other built-in procedure for parsing or evaluating Scheme, except
in your test cases. Submissions that use read in the lexer or parser will receive no credit. You may not use any
constructs for iteration – use recursion instead. See Rules and Regulations for the full set of rules.

3.4 Distribution Code

Use the following commands to download and unpack the distribution code:

$ wget https://eecs390.github.io/project-scheme-parser/starter-files.tar.gz
$ tar xzf starter-files.tar.gz

Source Files

distribution.
scm

Utility functions for use in the project. Read through the documentation here, as you will find
many of the functions useful.

lexer.scm Starter code for the Scheme lexer. Comments indicate where you will need to add or modify
code.

parser.scm Starter code for the Scheme parser.

You will only be modifying lexer.scm and parser.scm.

8

http://schemers.org/Documents/Standards/R5RS/

Example Files

simple.scm A simple parser for the language described in Parser.

Test Harnesses

util.scm Utility functions used in test code.
token-types-tester.
scm

Testing framework for lexing individual token types. Read the documentation at the top of
the file to determine how to use the framework.

tokenize-tester.
scm

Testing framework for lexing an entire Scheme file.

read-simple=tester.
scm

Testing framework for lexing and parsing simple Scheme expressions.

read-compound-tester.
scm

Testing framework for lexing and parsing compound Scheme expressions.

read-datum-tester.
scm

Testing framework for lexing and parsing all Scheme expressions.

parse-tester.
scm

Testing framework for lexing and parsing an entire Scheme file.

repl.scm A simple read-eval-print loop that uses read-datum for parsing and eval for evaluation.
rpl.scm A simple read-print loop that uses read-datum for parsing and prints out the resulting

datums, without evaluating them.
Makefile A Makefile for running test cases.

When writing tests that use these harnesses, read the documentation at the top of the testing harness to see its expected
input format. The test drivers (token-types-tester.scm, tokenize-tester.scm, read-simple-tester.scm,
read-compound-tester.scm, read-datum-tester.scm, and parse-tester.scm) all read input from standard
in and write to standard out. You can use file redirection from the command line to work with input and output files:

$ plt-r5rs token-types-tester.scm < string-tokens.in > string-tokens.out

9

Test Files

*tokens.in Test cases for use with token-types-tester.scm. You can run the tests with make
test-tokens.

*tokens.err Test cases for detecting errors in lexing. You can run the tests with make error-tokens.
*tokens.expect Expected output for the *tokens.in and *tokens.err tests.
distribution.
tokens.expect

Expected output for running tokenize-tester.scmwith distribution.scm. You can
use make test-tokenize to run the test.

simple.in Test case for use with read-simple-tester.scm. You can run it with make simple.
simple.expect Expected output for simple.in.
compound.in Test case for use with read-compound-tester.scm. You can run it with make

compound.
compound.expect Expected output for compound.in.
datum.in Test case for use with read-datum-tester.scm. You can run it with make datum.
datum.expect Expected output for datum.in.
*datum.err Test cases for detecting errors in parsing. You can run the tests with make error-datum.
*datum.expect Expected output for the *datum.err tests.
distribution.
datums.expect

Expected output for running parse-tester.scm with distribution.scm. You can
use make test-parse to run the test.

public_tests.scm Collected test cases from *.in and *.err files for use with tokenize-tester.scm and
parse-tester.scm.

public_tests.
tokens.expect

Expected output for running tokenize-tester.scm with public_tests.scm.

public_tests.
datums.expect

Expected output for running parse-tester.scm with public_tests.scm.

The * in the filenames above represents a wildcard pattern. For example, *datum.err matches the given files
error7-datum.err and error8-datum.err. You should write your own test files that match these patterns, and
they will be run when invoking the corresponding make target.

Errors

When your lexer or parser encounters improperly formatted input, you should signal an error by calling the error pro-
cedure, defined in distribution.scm, with an appropriate error message. For example, the input asdf, (including
the comma) is not a valid identifier, since it is not terminated by a delimiter. Thus, your lexer should invoke the error
procedure, as in the following:

(error "bad identifier")

This aborts lexing or parsing and prints out the error message:

Error: bad identifier

10

Token Representation

The output of lexical analysis is a sequence of tokens. In this project, a token is represented as a list of two elements.
The first element identifies the type of the token, while the second element is a representation of the data value for
the token. In our lexer, the type must be one of the Scheme symbols identifier, boolean, number, character,
string, or punctuator. The latter is the category we use for parentheses, the token representing the start of a vector
(#(), the dot (.), and Scheme quotation markers (' or ` or , or ,@). (Thus, any token that is not an identifier, boolean,
number, character, or string is a punctuator.) Within a token, the data value is represented as follows for each category:

• identifier: a Scheme symbol representing the identifier. For example, reading the input aloha should produce
the token (identifier aloha).

• boolean: a Scheme boolean representing the boolean literal. For example, reading the input #f should produce
the token (boolean #f).

• number: a Scheme number representing the number literal. For example, reading the input +3.14 should produce
the token (number 3.14).

• character: a Scheme character representing the character literal. For example, reading the input #\a should
produce the token (character #\a).

• string: a Scheme string representing the string literal. For example, reading the input "hello world" should
produce the token (string "hello world").

• punctuator: a Scheme string representing the punctuator (i.e. "(" or ")" or "#(" or "." or "'" or "`" or
"," or ",@"). For example, reading the input ,@ should produce the token (punctuator ",@").

The constructor and accessors for the token ADT are defined in the distribution code: token-make, token-type, and
token-data. Respect the ADT interface: do not use list manipulators in order to work with tokens.

4 Phase 1: Lexing Individual Token Types

In this phase, we will write separate functions to lex each token type. Each such function is a simpler task then lexing
all of Scheme, since it can assume the type of token it is parsing.

4.1 Strings

Start by reading over the starter code for read-string. After discarding whitespace and comments, it checks to
make sure that the initial character is a double quote, raising an error if it is not. (The read-start procedure in
distribution.scm raises an error if the character it reads does not match the one that is expected.) It then calls the
read-string-tail helper function, which will collect the string characters in reverse order in the read-so-far list.
The helper function uses get-non-eof-char, another procedure defined in distribution.scm, to read the next
character and make sure that it is not an end-of-file character. If the character is a double quote, the string is complete
and a string token must be constructed. The read-so-far list is reversed and converted to a string using the built-in
list->string procedure. Then token-make is used to encode the token type and data together.

If a backslash is encountered, the read-escaped function is called to read the rest of the escape sequence. This function
ensures that the escape sequence is one of those permitted by Scheme, and it returns the actual escaped character itself.
This is prepended to the read-so-far list by read-string-tail, which makes a recursive call to read the rest of
the string.

The last case, which you will need to complete, is when the character read by read-string-tail is neither the double
quote nor the backslash.

You can test your code using the token-types-tester.scm test driver. Some tests are contained in the file
string-tokens.in, with the expected output in string-tokens.expect:

11

$ plt-r5rs token-types-tester.scm < string-tokens.in > string-tokens.out
$ diff string-tokens.out string-tokens.expect

4.2 Booleans

Complete the read-boolean-tail procedure, which reads the tail end of a boolean literal and returns the token
representation. Refer to the R5RS spec for what are valid boolean literals. Raise an error if any other data is read.

A handful of test cases are located in boolean-tokens.in.

4.3 Characters

Write the read-character-tail procedure, which reads all but the start of a character literal. Enforce the require-
ment that a character literal be terminated by a delimiter; raise an error if this is not the case. (You will find the
delimiter? predicate in distribution.scm useful.) You should ensure that the delimiter remains in the input
stream, since it can constitute part of the next token in the stream. (Thus, use peek-char rather than read-charwhen
you may be reading a delimiter.) Also make sure to properly handle the #\space and #\newline literals. A few tests
are in character-tokens.in.

4.4 Numbers

The read-number procedure should lex a number literal. As mentioned in Lexer, we only handle a restricted set of
number formats. Even within this set, however, a number can begin with a sign, a digit, or a dot. As with characters,
enforce the requirement that a number be terminated by a delimiter. Make sure to handle decimals properly: raise an
error if a number literal contains more than one decimal point.

We recommend drawing out a finite-state machine to work out what helper functions to write and when to call them.
Use the FSM for strings in Lexical Analysis as a model.

You will likely find the built-in string->number procedure useful in constructing the token representation.

The file number-tokens.in contains some tests.

4.5 Identifiers

Read through the lexical specification for identifiers in the R5RS spec carefully, as it includes many special cases.
As mentioned previously, we will treat keywords as identifiers here. Enforce the requirement that an identifier be
terminated by a delimiter.

You must handle upper-case letters, but since case is insignificant, convert them to lower-case letters while lexing.
Thus, reading in Hello from input should produce the token (identifier hello). You will find the built-in
char-downcase procedure helpful.

A sign (i.e. + or -) followed by a delimiter denotes an identifier, but if anything other than a delimiter follows the sign,
then it cannot be the start of an identifier.

The ellipsis (...) is its own special case of an identifier. You must properly handle the fact that three consecutive dots,
terminated by a delimiter, is an identifier, but any other number of dots (e.g. .. or) is not.

As before, we recommend drawing out an FSM to work out the functions you need.

The built-in string->symbol procedure will be helpful in constructing the token representation.

A small number of test cases are in identifier-tokens.in.

12

http://schemers.org/Documents/Standards/R5RS/

4.6 Punctuators

Implement the read-punctuator procedure to lex a punctuator (i.e. one of () #(. ' ` , ,@). A comma
followed by an at (@) symbol is a single punctuator, while a comma followed by anything else indicates just the comma
punctuator itself. As discussed in Token Representation, use a string representation of the punctuator when constructing
the resulting token. Tests are in punctuator-tokens.in.

4.7 Errors

Your lexer should indicate errors by invoking the error procedure. A few test cases for errors are provided in the
*tokens.err files.

4.8 Testing

In addition to testing with the token-types-tester.scm harness, you may find it useful to test the lexing procedures
interactively. After starting the plt-r5rs interpreter and loading lexer.scm, you can call a lexing function and
provide the required input after the call:

> (load "lexer.scm")
> (read-string)
"Hello world!"
(string "Hello world!")
> (read-character)
#\space
(character #\space)
> (read-number)
+3.14
(number 3.14)

You must also write your own test files, as the given test files only cover a small number of cases. Make use of
the provided test harnesses and name your test files according to the same pattern as the provided files, so that they
automatically get run by the Makefile as described in Test Files.

5 Phase 2: Full Lexer

The next step is to write a single function that can lex any supported Scheme token. Complete the read-token
procedure so that it does so.

In some cases, you will find that looking at a single character is not enough to determine what kind of token it is.
Examples include a dot (.), which may be a punctuator, part of a number, or part of an identifier, and a hash (#), which
may be part of a punctuator, character, or boolean. We suggest drawing out a full state machine that handles any valid
input for our subset of Scheme, and then structure your functions accordingly. You will not be able to directly call the
functions you wrote in Phase 1 for these cases; those functions assume that the entire token is still in the input stream,
but you will have removed at least one character from the input to examine a second character.

Do not unnecessarily repeat code. If you find that you need to repeat code that you’ve already written as part of the
previous phase, restructure your program so that the shared code is in its own helper function that can be called from
wherever you need it.

Once you complete read-token, the provided tokenize procedure will lex all of standard input, producing a list of
tokens. The test driver tokenize-tester.scm calls this function and writes the result to standard output:

13

$ plt-r5rs tokenize-tester.scm < distribution.scm > distribution.tokens.out
$ diff distribution.tokens.out distribution.tokens.expect

6 Phase 3: Parser

Our Scheme parser reads tokens from standard input using the read-token function and then parses the tokens in
order to produce Scheme data that represent the input expressions. The parser should only consume the tokens needed
to build an expression. Thus, you should use read-token rather than the tokenize procedure.

6.1 Simple Expressions

Complete the read-simple-datum procedure, which reads and parses a single simple expression. Recall the Token
Representation, which consists of the type of the token and a Scheme representation of the data. You should not have
to do any further processing on the data contained within a token.

The file simple.in contains a few test cases for reading simple data. The read-simple-tester.scm test driver
compares the output of your parser with that of the built-in read procedure:

$ plt-r5rs read-simple-tester.scm < simple.in > simple.out
$ diff simple.out simple.expect

6.2 Compound Expressions

Compound expressions consist of lists (including dotted lists), vectors, and abbreviations. Fill in the
read-compound-data-helper procedure, which is used by read-compound-datum to read and parse a compound
expression.

Lists of the non-dotted variety and vectors consist of an arbitrary sequence of expressions, terminated by a closing
parenthesis. You will need to recursively call the read-datum or read-datum-helper procedures in order to read
and parse each of these expressions. You will need to complete the latter procedure before these recursive calls function
properly. Do so as part of writing read-compound-data-helper.

Pay careful attention to the format of a dotted list: at least one datum must precede the dot, and exactly one must follow
between the dot and the closing parenthesis. Raise an error if either condition is violated.

You will need to combine the data in a list or vector into the appropriate data structure. Thus, parsing the input (1 2)
should produce an actual list containing the elements 1 and 2. You may find the list->vector procedure useful in
producing the result of parsing a vector.

An abbreviation consists of an abbreviation marker followed by a datum. You will need to turn an abbreviation into its
full form, which is a list consisting of the corresponding keyword and the datum. Some examples:

'hello --> (quote hello)
`world --> (quasiquote world)
,(a b) --> (unquote (a b))
,@(c d) --> (unquote-splicing (c d))

We suggest diagramming your program structure for parsing compound expressions before writing any code. Re-
fer to the simple parser in Parser as an example. It may be helpful to work through some examples of compound
Scheme expressions to get an idea of how to handle them in your parser. (We do not suggest drawing a finite-state

14

machine here, as an FSM only works for regular expressions and is not powerful enough to recognize even the rela-
tively simple syntactic structure of Scheme.) Use helper functions where appropriate: do not place your code entirely
in read-compound-data-helper or read-datum-helper.

A handful of test cases are in compound.in and datum.in, and you can use the test drivers read-compound-tester.
scm and read-datum-tester.scm to run the tests. You can also use the Makefile to run all the tests provided in the
distribution code.

6.3 Errors

As with the lexer, signal errors using the error procedure. A few test cases that have errors are provided in the
*datum.err files, and they can be run with read-datum-tester.scm.

6.4 Testing

Once you complete the parser, you can test your code against the built-in read procedure: read-datum when read-
ing and parsing the same input should produce a result that compares equal? with that of read. The test drivers
read-simple-tester.scm, read-compound-tester.scm, and read-datum-tester.scm work on input files
where every expression is repeated twice, using read to read the first and read-datum for the second. They then
compare the results to make sure they are equal.

You may also find it useful to examine the results of read-datum and read interactively. You can do so by starting
the plt-r5rs interpreter and loading parser.scm:

> (load "parser.scm")
> (read)
'(hello world) ; typed, result is on next line
(quote (hello world))
> (read-datum)
'(hello world) ; typed, result is on next line
(quote (hello world))

You must write your own test files, as the given test files only cover a small number of cases. As with the lexer, make
use of the provided test harnesses and file-naming conventions, as described in Test Files.

The test harness parse-tester.scm uses read-datum to lex and parse all of standard input, writing the parsed data
to standard output:

$ plt-r5rs parse-tester.scm < distribution.scm > distribution.datums.out
$ diff distribution.datums.out distribution.datums.expect

The file repl.scm implements a simple read-eval-print loop (REPL) that interactively reads in expressions using
read-datum, evaluates them with the built-in eval, and then prints the result. The following is an example of running
repl.scm:

$ plt-r5rs repl.scm
scm> (+ 1 3.1)
4.1
scm> (define x 3)
scm> x
3
scm> (define (hello) (display "Hello world!") (newline))
scm> (hello)

(continues on next page)

15

(continued from previous page)

Hello world!
scm>

An end-of-file will exit the program. (If you want to get meta, run plt-r5rs repl.scm and then copy and paste the
contents of repl.scm to standard input. You now have a REPL within a REPL within the plt-r5rs interpreter! You
will have to enter two end-of-files to exit, one for each REPL.)

The file rpl.scm implements a read-print loop, without evaluation. It interactively reads in datums using read-datum,
printing out what was read. The following is an example of running rpl.scm:

$ plt-r5rs rpl.scm
read> 3
3
read> "\a"
Error: unrecognized escape sequence
read> (+ 1
4)
(+ 1 4)
read> (1 . 2)
(1 . 2)
read> (1 . 2 3)
Error: expected closing parenthesis
read> '3
(quote 3)
read> '''x
(quote (quote (quote x)))

An end-of-file will exit the program.

7 Rules and Regulations

The goals of this project are to better understand lexing and parsing, as well as to get experience writing Scheme and
functional code. As such, your code is subject to the following constraints:

• You may not use any non-R5RS-standard code, nor external code or code generated by an external library (e.g.
by a lexer or parser generator).

• You may not use the built-in read or eval procedures, or similar procedures, except in testing.

• You may not use any procedures or constructs with side effects, except the I/O procedures read-char,
peek-char, display, write, and newline (you likely won’t need the latter three yourself, but they are used
in the distribution code). Included in the prohibited set are any mutators (procedures or constructs that end with
a bang, e.g. set!), and you may only use define at the top level (i.e. at global scope). The read-char and
peek-char procedures may only be used in the lexer.

• You may not use any iteration constructs (including the “named let” construct described in section 4.2.4 of the
R5RS spec). Use recursion instead.

To facilitate checking the rules above, the following symbols may not appear in lexer.scm or parser.scm:

• read

• eval

• current-input-port

16

• current-output-port

• open-input-file

• open-output-file

• with-input-from-file

• with-output-to-file

• any symbol ending with !

• define, except as the first item in a top-level list

• peek-char, except in lexer.scm

• read-char, except in lexer.scm

• do

• for-each

• syntax-rules

Any violations of the two sets of rules above will result in a score of 0.

In addition, the standard Engineering Honor Code rules apply. Thus, you may not share any artifact you produce for this
project outside of your partnership, including code, test cases, and diagrams (e.g. of state machines). This restriction
continues to apply even after you leave the course. Violations will be reported to the Honor Council.

The functions you write in this project do not have to be tail recursive.

8 Grading

The grade breakdown for this project is as follows:

• 25% checkpoint

• 70% final deadline autograded

• 5% final deadline hand graded

Hand grading will evaluate your programming practices, such as avoiding unnecessary repetition and respecting ADT
interfaces. We will look for the following specific pitfalls:

• not respecting the token ADT – only token-make, token-type, and token-data should be used to interact
with the ADT

• not respecting the interface of the lexer in the parser – the parser should only use read-token and no other input
procedures

• significant code duplication

• using a conditional to check for set membership rather than a built-in procedure such as member or memv

• non-descriptive variable, function, or class names

• avoiding the recursive leap of faith, leading to unnecessary cases in recursive functions

• overly lengthy or nested code, where helper functions should be used instead

• unnecessary use of let (e.g. (let ((variable expression)) variable) instead of just expression, or
using nested lets where a let* could be used instead)

• unnecessary conditional or boolean logic (e.g. comparing to #t or #f, patterns such as “if test then true else
false” instead of using the truth value of “test” directly, and so on),

17

• using nested conditionals where a cond could be used instead

• outdated comments or commented-out code, which make the code harder to read, understand, and maintain

• missing or uninformative documentation

Use the above as a checklist for making sure that your code meets the coding-practices requirements.

To be eligible for hand grading, your solution must achieve at least half the points on the autograded, final-deadline
portion of the project.

8.1 Test Grading

We will autograde your tests for Phase 2 and Phase 3, which should be written as plain Scheme input. Since we are
only doing syntactic analysis, your test cases need only be concerned with syntax. They do not need to be semantically
correct Scheme code.

Your test files must use the following naming pattern:

• test*.scm

This pattern does not match any of the public test files – the buggy instructor solutions have been carefully crafted to
pass all the public tests, so you will need to write your own tests that provide coverage distinct from the public tests.

You can submit up to 30 files matching the pattern above.

To grade your tests, we use a set of intentionally buggy instructor solutions (or mutants).

1. We run your tests with correct solutions for both the lexer and parser, generating corresponding .expect files:

$ plt-r5rs tokenize-tester.scm < test-file.scm > test-file.tokens.expect
$ plt-r5rs parse-tester.scm < test-file.scm > test-file.datums.expect

2. We run all of your tests against each buggy solution, using the .expect files generated by the correct solution.

• If any of your tests fail on the buggy solution, they have caught the bug.

• The autograder assigns points for each bug that is caught.

You may include any number of erroneous or correct tokens and datums in a single test*.scm file. However, keep
the following in mind:

• When the lexer or parser encounters an error, it discards the rest of the current line. Therefore, do not include
multiple errors on the same line.

Running Your Own Test Cases

The Makefile will automatically run your test*.scm test cases through tokenize-tester.scm and
parse-tester.scm. However, it won’t be able to compare against the expected results until you generate .expect
files. You can do so using the same process described above for mutation testing:

$ plt-r5rs tokenize-tester.scm < test-file.scm > test-file.tokens.expect
$ plt-r5rs parse-tester.scm < test-file.scm > test-file.datums.expect

Make sure to manually check the contents of the resulting files to ensure they contain what you expect.

18

https://en.wikipedia.org/wiki/Mutation_testing

9 Submission

All code used by your lexer must be located in lexer.scm or the provided distribution.scm, which you may not
modify.

All code used by your parser must be in parser.scm or the provided distribution.scm, except that your parser
must use read-token from lexer.scm.

We will test your lexer and parser individually as well as together. Thus, your code must adhere to the API and con-
ventions described in this spec. You may not assume that any files other than the provided distribution.scm are
present when your lexer is tested. You may not assume that any files other than the provided distribution.scm and
either your own lexer.scm or our solution are present when your parser is tested.

Submit lexer.scm, parser.scm, and your own test files to the autograder before the deadline. You may submit up to
30 files for the pattern test*.scm (do not submit *.expect files). If you have more test files than the limit, you will
need to choose a subset to submit to the autograder.

10 Frequently Asked Questions

• Q: Do our error messages need to match those in the spec or instructor solution?

A: You do not have to match the error messages; you just need to invoke the error procedure. The Makefile
and autograder ignore the actual content of the error messages and just check that an error was signaled at the
appropriate time.

• Q: When I run the test cases, I get an error like Expected | line ["\n|\n"] after token, got:
"|\nn". What does this mean?

This means that you are reading the wrong number of characters from the input stream. Some of the testing
frameworks use the pipe | separator in the input to determine whether you are consuming the correct amount of
input. To fix this, you’ll likely need to replace a read-char with peek-char (or vice versa if you’re not reading
enough input).

• Q: I am failing the “Public read-datum Tests with Solution lexer.scm and Different Token ADT Implemen-
tation” test case, but I am only using read-token from lexer.scm. What could be the problem?

A: The most common culprits we’ve seen are:

1. Violating the interface of the token ADT. This test intentionally uses a different implementation of the ADT
than the one provided, but with the same interface.

2. Using the wrong equivalence or membership predicate. There are several areas where the behavior of eq?
and/or eqv? is unspecified, and others where the results depend on the implementation details of the lexer
and parser. See the discussion in the R5RS spec on eq? vs. eqv? vs. equal?, which is what memq, memv,
and member use, respectively.

• Q: When I try to construct a list that corresponds to an abbreviation symbol, it gets printed by DrRacket
not as a list but in the abbreviated form. Is there a way around this?

A: You don’t have to worry about this. This is just DrRacket’s convention for printing out a list corresponding to
an abbreviation, and it doesn’t affect the test cases. You can use car and cdr to double check that what you’re
constructing has the right form:

> (list 'quote 'a)
'a
> (car (list 'quote 'a))
quote

(continues on next page)

19

(continued from previous page)

> (cdr (list 'quote 'a))
(a)

More generally, the Scheme datum represented by (quote a) has multiple valid external representations –
(quote a) and 'a. The interpreter chooses one valid representation to print, and it may not be the same as what
the user typed in. Here are a few other cases of this:

> 3.
3.0
> 3.00
3.0
> '(1 2 . (3 4))
(1 2 3 4)

20

	Project 2: Scheme Lexer and Parser
	Optional checkpoint due Wednesday, Feb 5, 2025 at 8pm ET
	Final deadline Wednesday, Feb 12, 2025 at 8pm ET
	Reported Time to Complete the Project

	Optional Checkpoint
	Background
	Lexer
	Lexical Analysis

	Parser
	Recursive Descent Parsing

	Scheme I/O Procedures
	Distribution Code
	Source Files
	Example Files
	Test Harnesses
	Test Files
	Errors
	Token Representation

	Phase 1: Lexing Individual Token Types
	Strings
	Booleans
	Characters
	Numbers
	Identifiers
	Punctuators
	Errors
	Testing

	Phase 2: Full Lexer
	Phase 3: Parser
	Simple Expressions
	Compound Expressions
	Errors
	Testing

	Rules and Regulations
	Grading
	Test Grading
	Running Your Own Test Cases

	Submission
	Frequently Asked Questions

