
Lab 2: Grammars and Internal/External Representations

Learning objectives:

• Understand the difference between internal and external representations

• Understand how recursive rules can be used to derive valid syntax

• Understand how grammar rules relate to the structure of an internal representation

• Gain experience reading a language specification

The concepts covered in this lab will carry over directly into project 2. In project 2, you will be building a parser for
Scheme, which takes in an external representation of a program and converts it to a structured, internal representation.
You will also need to consult the Scheme language specification and grammar to be able to correctly implement the
parser.

Use the following commands to download and unpack the distribution code:

$ wget https://eecs390.github.io/lab/lab02/starter-files.tar.gz
$ tar xzf starter-files.tar.gz

1. Context-free grammars. Consider the following CFG, with start symbol E:

E → T | T −E

T → I | I +T

I → a | b

The following is a derivation of the string a+b:

E
|
T

/ | \
I + T
| |
a I

|
b

What are the derivation trees produced for each of the following fragments?

a) a+b+a

b) a+b−a

c) a−b+a

d) a−b−a

2. Parsing. Consider the following CFG that represents nested lists of positive integers, similar to Python’s list
syntax:

List -> [ElementsOpt]
ElementsOpt -> ε | Elements
Elements -> Element | Element , Elements
Element -> List | Integer
Integer -> Digit | Digit Integer
Digit -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1

Input String Syntactically Valid?
[] Yes
[1,2,3] Yes
[1, 2, 3] No (whitespace not allowed)
[1,2,3,] No (trailing comma not allowed)
[1,[2,3],[[4]]] Yes

Implement a parser for this grammar.

List Parsing Code
Starter code has been provided for you in list_parser.py. The parse_list() function is the entry
point for the parser -- it takes in a Stream object over a string (external representation) and returns a Python
list representing the parsed string (internal representation).

Your parser should use the recursive descent strategy for parsing, with a function for each nonterminal in the
grammar. We have provided function stubs for each nonterminal, as well as an implementation for parse_list(),
which corresponds to the List nonterminal. The functions make use of the provided Stream class to traverse
the string, as it is a similar interface to the one you will use in project 2.

To test your implementation, run the doctests:

$ python3 -m doctest list_parser.py

3. Literals and operators. Implement a BitVector type in C++17, representing a growable sequence of booleans.
Your BitVector must support the following operations:

• String literals that end with the _bv suffix construct a BitVector from the string with bits in order from
left to right. A 0 character specifies false and a 1 character specifies true. Example:

"1010"_bv --> [true, false, true, false]

In other words, the external representation "1010"_bv gets converted to the internal representation of a
BitVector object that contains the elements true, false, true, false.

• The size() member function returns the size of the BitVector. The return type should be size_t.

• The push_back() member function takes in a bool and appends it to the end of the BitVector.

• The [] operator returns the boolean at the given position. You may return by value or reference (i.e. you
do not have to support modifying a BitVector using the [] operator).

• The bitwise operators &, |, and ^, when applied to two BitVectors, should result in a BitVector
that consists of the AND, OR, and XOR of the two BitVectors, respectively. If they differ in size, then
the operators should treat the smaller as if it were padded on the right with zeros.

• The << stream insertion operator when applied to a BitVector should insert each boolean as a 0 or 1.
Example:

cout << "1010"_bv; --> prints 1010

Write your code in BitVector.hpp. We have provided a test case in BitVector_test.cpp and expected
output in BitVector_test.correct.

You may find this reference helpful.

To compile and run tests, use the included Makefile:

$ make bv

2

https://en.cppreference.com/w/cpp/language/user_literal

